24 research outputs found

    Manganese carbonyl-mediated reactions of azabutadienes with phenylacetylene, methyl acrylate and other unsaturated molecules

    Get PDF
    Reaction of PhCH₂Mn(CO)₅ with l,4-di-aryl-1-aza-1,3-butadienes gave substituted pyrrolinonyl rings which were η⁎-coordinated to a Mn(CO)₃ group. These are formed by intramolecular CO insertion into a (non-isolated) cyclomanganated intermediate, followed by cyclisation. Other unsaturated reagents (PhC≡CH, CH2=CHCOOMe, PhNCO) gave products arising from insertion of these, including a structurally characterised tri-aryl-η⁔-azacyclohexadienyl-Mn(CO)₃ complex from the reaction with the alkyne. PhCH₂Mn(CO)₅ reacts with l,4-di-aryl-1-aza-1,3-butadienes in the presence of unsaturated substrates to give products based on a cyclomanganated intermediate

    Time to Switch to Second-line Antiretroviral Therapy in Children With Human Immunodeficiency Virus in Europe and Thailand.

    Get PDF
    Background: Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Methods: Children aged <18 years initiating combination ART (≄2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≄1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Results: Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. Conclusions: One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch

    Antimicrobial Natural Products from Plant Pathogenic Fungi

    No full text
    Isolates of a variety of fungal plant pathogens (Alternaria radicina ICMP 5619, Cercospora beticola ICMP 15907, Dactylonectria macrodidyma ICMP 16789, D. torresensis ICMP 20542, Ilyonectria europaea ICMP 16794, and I. liriodendra ICMP 16795) were screened for antimicrobial activity against the human pathogenic bacteria Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Mycobacterium abscessus, and M. marinum and were found to have some activity. Investigation of the secondary metabolites of these fungal isolates led to the isolation of ten natural products (1–10) of which one was novel, (E)-4,7-dihydroxyoct-2-enoic acid (1). Structure elucidation of all natural products was achieved by a combination of NMR spectroscopy and mass spectrometry. We also investigated the antimicrobial activity of a number of the isolated natural products. While we did not find (E)-4,7-dihydroxyoct-2-enoic acid (1) to have any activity against the bacteria and fungi in our assays, we did find that cercosporin (7) exhibited potent activity against Methicillin resistant Staphylococcus aureus (MRSA), dehydro-curvularin (6) and radicicol (10) exhibited antimycobacterial activity against M. marinum, and brefeldin A (8) and radicicol (10) exhibited antifungal activity against Candida albicans. Investigation of the cytotoxicity and haemolytic activities of these natural products (6–8 and 10) found that only one of the four active compounds, radicicol (10), was non-cytotoxic and non-haemolytic

    Antimicrobial Natural Products from Plant Pathogenic Fungi

    No full text
    Isolates of a variety of fungal plant pathogens (Alternaria radicina ICMP 5619, Cercospora beticola ICMP 15907, Dactylonectria macrodidyma ICMP 16789, D. torresensis ICMP 20542, Ilyonectria europaea ICMP 16794, and I. liriodendra ICMP 16795) were screened for antimicrobial activity against the human pathogenic bacteria Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Mycobacterium abscessus, and M. marinum and were found to have some activity. Investigation of the secondary metabolites of these fungal isolates led to the isolation of ten natural products (1&ndash;10) of which one was novel, (E)-4,7-dihydroxyoct-2-enoic acid (1). Structure elucidation of all natural products was achieved by a combination of NMR spectroscopy and mass spectrometry. We also investigated the antimicrobial activity of a number of the isolated natural products. While we did not find (E)-4,7-dihydroxyoct-2-enoic acid (1) to have any activity against the bacteria and fungi in our assays, we did find that cercosporin (7) exhibited potent activity against Methicillin resistant Staphylococcus aureus (MRSA), dehydro-curvularin (6) and radicicol (10) exhibited antimycobacterial activity against M. marinum, and brefeldin A (8) and radicicol (10) exhibited antifungal activity against Candida albicans. Investigation of the cytotoxicity and haemolytic activities of these natural products (6&ndash;8 and 10) found that only one of the four active compounds, radicicol (10), was non-cytotoxic and non-haemolytic

    Antimicrobial Metabolites against Methicillin-Resistant <i>Staphylococcus aureus</i> from the Endophytic Fungus <i>Neofusicoccum australe</i>

    No full text
    Antimicrobial bioassay-guided fractionation of the endophytic fungi Neofusicoccum australe led to the isolation of a new unsymmetrical naphthoquinone dimer, neofusnaphthoquinone B (1), along with four known natural products (2–5). Structure elucidation was conducted by nuclear magnetic resonance (NMR) spectroscopic methods, and the antimicrobial activity of all the natural products was investigated, revealing 1 to be moderately active towards methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) of 16 ”g/mL

    Accelerometry based assessment of gait parameters in children

    No full text
    corecore