6 research outputs found

    Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model

    Get PDF
    BACKGROUND: Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and have been previously used to study activation of coagulation and thrombosis during influenza virus infection. OBJECTIVES: This study aimed to explore the use of (heat-inactivated) plasma and lung material from SARS-CoV-2-inoculated ferrets studying COVID-19-associated changes in coagulation and thrombosis. MATERIAL AND METHODS: Histology and longitudinal plasma profiling using mass spectrometry-based proteomics approach was performed. RESULTS: Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. The majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. CONCLUSIONS: We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited

    Influence of rosuvastatin on apolipoproteins and coagulation factor levels: Results from the STAtin Reduce Thrombophilia trial

    Get PDF
    Background: The STAtins Reduce Thrombophilia trial showed that, in patients with prior venous thrombosis, rosuvastatin decreased various coagulation factor levels. Objectives: Here, we investigated the hypothesis that statins decrease coagulation factor levels through shared mechanisms of synthesis or regulatory pathways with apolipoproteins. Methods: We measured the levels of apolipoprotein (Apo)A-I, A-II, A-IV, (a), B-100, B-total, C-I, C-II, C-III, and E in patients (n = 126) randomized to 28 days of rosuvastatin use. We assessed the association between apolipoproteins and coagulation factors at baseline using linear regression. The mean difference in apolipoprotein levels between baseline and after 28 days of rosuvastatin use was determined through linear regression, adjusting for age, sex, and body mass index. Coagulation factors were added to this model to determine if the lowering of apolipoproteins by rosuvastatin was linked with coagulation factor levels. Results: At baseline, levels of all apolipoproteins, except Apo(a), were positively associated with FVII, FIX, and FXI. Apolipoproteins levels, except for ApoA-I, A-IV, and Apo(a), were decreased after 28 days of rosuvastatin. ApoB-100 showed the largest mean decrease of -0.43 g/L (95% CI = −0.46 to −0.40). The decrease in ApoC-I and C-III levels was associated with a decrease in FVII, whereas the decrease in apoA-II, B-100, and B-total was associated with a decrease in FXI. The decrease in apolipoproteins was neither associated with FVIII or vWF decrease nor with endogenous thrombin potential changes. Conclusions: Rosuvastatin decreases the level of several apolipoproteins, but this decrease was associated only with a decrease in FVII and XI and not with FVIII/vWF

    Low human and murine Mcl-1 expression leads to a pro-apoptotic plaque phenotype enriched in giant-cells

    No full text
    The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1−/−) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1−/− compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1−/− peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1−/− mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque
    corecore