727 research outputs found

    Tissue perfusion and oxygenation to monitor fluid responsiveness in critically ill, septic patients after initial resuscitation: a prospective observational study

    Get PDF
    Fluid therapy after initial resuscitation in critically ill, septic patients may lead to harmful overloading and should therefore be guided by indicators of an increase in stroke volume (SV), i.e. fluid responsiveness. Our objective was to investigate whether tissue perfusion and oxygenation are able to monitor fluid responsiveness, even after initial resuscitation. Thirty-five critically ill, septic patients underwent infusion of 250 mL of colloids, after initial fluid resuscitation. Prior to and after fluid infusion, SV, cardiac output sublingual microcirculatory perfusion (SDF: sidestream dark field imaging) and skin perfusion and oxygenation (laser Doppler flowmetry and reflectance spectroscopy) were measured. Fluid responsiveness was defined by a ≥5 or 10 % increase in SV upon fluids. In responders to fluids, SDF-derived microcirculatory and skin perfusion and oxygenation increased, but only the increase in cardiac output, mean arterial and pulse pressure, microvascular flow index and relative Hb concentration and oxygen saturation were able to monitor a SV increase. Our proof of principle study demonstrates that non-invasively assessed tissue perfusion and oxygenation is not inferior to invasive hemodynamic measurements in monitoring fluid responsiveness. However skin reflectance spectroscopy may be more helpful than sublingual SDF

    Facilitating return to work through early specialist health-based interventions (FRESH): protocol for a feasibility randomised controlled trial

    Get PDF
    Background Over one million people sustain traumatic brain injury each year in the UK and more than 10 % of these are moderate or severe injuries, resulting in cognitive and psychological problems that affect the ability to work. Returning to work is a primary rehabilitation goal but fewer than half of traumatic brain injury survivors achieve this. Work is a recognised health service outcome, yet UK service provision varies widely and there is little robust evidence to inform rehabilitation practice. A single-centre cohort comparison suggested better work outcomes may be achieved through early occupational therapy targeted at job retention. This study aims to determine whether this intervention can be delivered in three new trauma centres and to conduct a feasibility, randomised controlled trial to determine whether its effects and cost effectiveness can be measured to inform a definitive trial. Methods/design Mixed methods study, including feasibility randomised controlled trial, embedded qualitative studies and feasibility economic evaluation will recruit 102 people with traumatic brain injury and their nominated carers from three English UK National Health Service (NHS) trauma centres. Participants will be randomised to receive either usual NHS rehabilitation or usual rehabilitation plus early specialist traumatic brain injury vocational rehabilitation delivered by an occupational therapist. The primary objective is to assess the feasibility of conducting a definitive trial; secondary objectives include measurement of protocol integrity (inclusion/exclusion criteria, intervention adherence, reasons for non-adherence) recruitment rate, the proportion of eligible patients recruited, reasons for non-recruitment, spectrum of TBI severity, proportion of and reasons for loss to follow-up, completeness of data collection, gains in face-to-face Vs postal data collection and the most appropriate methods of measuring primary outcomes (return to work, retention) to determine the sample size for a larger trial. Discussion To our knowledge, this is the first feasibility randomised controlled trial of a vocational rehabilitation health intervention specific to traumatic brain injury. The results will inform the design of a definitive trial

    Outcomes of patients with perforated colon cancer:A systematic review

    Get PDF
    Introduction: Perforated colon cancer (PCC) is a distinct clinical entity with implications for treatment and prognosis, however data on PCC seems scarce. The aim of this systematic review is to provide a comprehensive overview of the recent literature on clinical outcomes of PCC. Materials and methods: A systematic literature search of MEDLINE (PubMed), Embase, Cochrane library and Google scholar was performed. Studies describing intentionally curative treatment for patients with PCC since 2010 were included. The main outcome measures consisted of short-term surgical complications and long-term oncological outcomes. Results: Eleven retrospective cohort studies were included, comprising a total of 2696 PCC patients. In these studies, various entities of PCC were defined. Comparative studies showed that PCC patients as compared to non-PCC patients have an increased risk of 30-day mortality (8–33% vs 3–5%), increased post-operative complications (33–56% vs 22–28%), worse overall survival (36–40% vs 48–65%) and worse disease-free survival (34–43% vs 50–73%). Two studies distinguished free-perforations from contained perforations, revealing that free-perforation is associated with significantly higher 30-day mortality (19–26% vs 0–10%), lower overall survival (24–28% vs 42–64%) and lower disease-free survival (15% vs 53%) as compared to contained perforations. Conclusion: Data on PCC is scarce, with various PCC entities defined in the studies included. Heterogeneity of the study population, definition of PCC and outcome measures made pooling of the data impossible. In general, perforation, particularly free perforation, seems to be associated with a substantial negative effect on outcomes in colon cancer patients undergoing surgery. Better definition and description of the types of perforation in future studies is essential, as outcomes seem to differ between types of PCC and might require different treatment strategies.</p

    Generalized Boltzmann Equation for Lattice Gas Automata

    Full text link
    In this paper, for the first time a theory is formulated that predicts velocity and spatial correlations between occupation numbers that occur in lattice gas automata violating semi-detailed balance. Starting from a coupled BBGKY hierarchy for the nn-particle distribution functions, cluster expansion techniques are used to derive approximate kinetic equations. In zeroth approximation the standard nonlinear Boltzmann equation is obtained; the next approximation yields the ring kinetic equation, similar to that for hard sphere systems, describing the time evolution of pair correlations. As a quantitative test we calculate equal time correlation functions in equilibrium for two models that violate semi-detailed balance. One is a model of interacting random walkers on a line, the other one is a two-dimensional fluid type model on a triangular lattice. The numerical predictions agree very well with computer simulations.Comment: 31 pages LaTeX, 12 uuencoded tar-compressed Encapsulated PostScript figures (`psfig' macro), hardcopies available on request, 78kb + 52k

    Multivariate paired data analysis: multilevel PLSDA versus OPLSDA

    Get PDF
    Metabolomics data obtained from (human) nutritional intervention studies can have a rather complex structure that depends on the underlying experimental design. In this paper we discuss the complex structure in data caused by a cross-over designed experiment. In such a design, each subject in the study population acts as his or her own control and makes the data paired. For a single univariate response a paired t-test or repeated measures ANOVA can be used to test the differences between the paired observations. The same principle holds for multivariate data. In the current paper we compare a method that exploits the paired data structure in cross-over multivariate data (multilevel PLSDA) with a method that is often used by default but that ignores the paired structure (OPLSDA). The results from both methods have been evaluated in a small simulated example as well as in a genuine data set from a cross-over designed nutritional metabolomics study. It is shown that exploiting the paired data structure underlying the cross-over design considerably improves the power and the interpretability of the multivariate solution. Furthermore, the multilevel approach provides complementary information about (I) the diversity and abundance of the treatment effects within the different (subsets of) subjects across the study population, and (II) the intrinsic differences between these study subjects

    Novel clinical applications of state-of-the-art multi-slice computed tomography

    Get PDF
    Recent years have witnessed a rapid development of multi-slice computed tomography (MSCT) technology. The number of detector rows has increased from 4-slices to the current availability of 64-slice and even 320-slice systems. In addition, images are acquired with thinner slices and faster rotation times resulting in substantially improved image quality and diagnostic accuracy. Simultaneously, effective dose reduction acquisition techniques have been developed allowing considerable reduction of the radiation dose. Conceivably, these advancements may allow further expansion of the use of MSCT beyond the visual assessment of the presence or absence of significant coronary artery disease. Indeed, a particular advantage of the technique is that in addition to evaluation of the coronary arteries it also allows assessment of cardiac structures and function. The purpose of the current review is to discuss several novel applications of cardiac MSCT, including stenosis quantification, atherosclerotic plaque imaging and prognostification as well as imaging of left ventricular function, aortic and mitral valve anatomy using state-of-the-art technology

    Correlations and Renormalization in Lattice Gases

    Full text link
    A complete formulation is given of an exact kinetic theory for lattice gases. This kinetic theory makes possible the calculation of corrections to the usual Boltzmann / Chapman-Enskog analysis of lattice gases due to the buildup of correlations. It is shown that renormalized transport coefficients can be calculated perturbatively by summing terms in an infinite series. A diagrammatic notation for the terms in this series is given, in analogy with the diagrammatic expansions of continuum kinetic theory and quantum field theory. A closed-form expression for the coefficients associated with the vertices of these diagrams is given. This method is applied to several standard lattice gases, and the results are shown to correctly predict experimentally observed deviations from the Boltzmann analysis.Comment: 94 pages, pure LaTeX including all figure
    corecore