489 research outputs found

    Oral Performance and the Veil of Text:Detextification, Paul's Letters, and the Testcase of Galatians 2-3

    Get PDF
    It is now common opinion that the biblical documents functioned in an oral context dominated by the spoken word. The present study centres on the letters of Paul, especially Galatians, and addresses the complex relation between this functioning in the original oral setting and the daily praxis of current biblical scholarship in which these documents function as autonomous texts, detached from the context of its original oral delivery. It will be argued that in addition to the difference in media (oral performance there-and-then versus reading the text here-and-now) it is crucial to differentiate the mindsets involved. A highly literate reader in the present structures thought differently from someone in the past who is formed by oral-aural communication. The leading question of this investigation is: How can a biblical scholar here-and-now relate to the text of the letters of Paul (in a printed or digital version) in such a way that he or she can understand (in the typically accompanying highly literate mindset) how the apostle envisioned his original addressees to understand (in their rather unfamiliar oral mindset) the documented words in the event of delivery? It is argued that by textualizing history and historicizing text a detextification of our understanding of these ancient documents is possible. Two testcases of detextification are provided, viz. Gal 3.10–12, in which the presence of a self-evident and simple enthymematic (syllogistic) reasoning is put to the test, and Gal 2.18–20, in which it is argued that Paul counters the call to circumcision by his opponents by a recalling of the baptism of the Galatian converts

    Parallel iteration across the steps of high-order Runge-Kutta methods for nonstiff initial value problems

    Get PDF
    AbstractFor the parallel integration of nonstiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on “parallelism across the problem”, on “parallelism across the method” and on “parallelism across the steps”. The first type of parallelism does not require special integration methods and can be exploited within any available IVP solver. The method-parallelism approach received much attention, particularly within the class of explicit Runge-Kutta methods originating from fixed point iteration of implicit Runge-Kutta methods of Gaussian type. The construction and implementation on a parallel machine of such methods is extremely simple. Since the computational work per processor is modest with respect to the number of data to be exchanged between the various processors, this type of parallelism is most suitable for shared memory systems. The required number of processors is roughly half the order of the generating Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration and requires the processors to communicate after each full iteration. If the iterations have sufficient computational volume, then the step-parallel approach may be suitable for implementation on distributed memory systems. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The dynamic step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to achieve speed-up factors up to 15

    The Impact of Climate Change on Water Availability and Recharge of Aquifers in the Jordan River Basin

    Get PDF
    Climate change can seriously affect the Middle East region by reduced and erratic rainfall. Formulating appropriate coping policies should account for local effects and changing flows interconnecting spatial units. We apply statistical downscaling techniques of coarse global circulation models to predict future rainfall patterns in the Yarmouk Basin, using a linear regression to extrapolate these results to the entire Jordan River Basin (JRB). Using a detailed water economy model for the JRB we predict rainfall patterns to evaluate the impact of climate change on agriculture and groundwater recharge. For the JRB, rainfall in 2050 will be around 10% lower than present precipitation, but with substantial spatial spreading. An overall reduction of net revenue from crop cultivation is estimated at 150 million USD, with major losses in Israel, Jordan, and the West Bank; Syrian revenues will slightly increase. The recharge of groundwater is affected negatively, and outflow to the Dead Sea is substantially lower, leading to further increases in salinization

    Review of the safety, efficacy, costs and patient acceptability of recombinant follicle-stimulating hormone for injection in assisting ovulation induction in infertile women

    Get PDF
    Anovulation is a common cause of female subfertility. Treatment of anovulation is aimed at induction of ovulation. In women with clomiphene-citrate resistant WHO group II anovulation, one of the treatment options is ovulation induction with exogenous follicle-stimulating hormone (FSH or follitropin). FSH is derived from urine or is produced as recombinant FSH. Two forms of recombinant FSH are available – follitropin alpha and follitropin beta. To evaluate the efficacy, safety, costs and acceptability of recombinant FSH, we performed a review to compare recombinant FSH with urinary-derived FSH products. Follitropin alpha, beta and urinary FSH products appeared to be equally effective in terms of pregnancy rates. Patient safety was also found to be comparable, as the incidence of side effects including multiple pregnancies was similar for all FSH products. In practice follitropin alpha and beta may be more convenient to use due to the ease of self-administration, but they are also more expensive than the urinary products

    Structure, mechanism and cooperation of bacterial multidrug transporters.

    Get PDF
    Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.BL and DD are supported by the Medical Research Council (MRC), Human Frontiers Science Program (HFSP), and the Wellcome Trust. Work in the Van Veen lab is supported by the Biotechnology and Biological Sciences Research Council (BBSRC), MRC, HFSP, Royal Society, Society for Antimicrobial Chemotherapy (BSAC), Herchel Smith Foundation, and Commonwealth Trust. Work in the Pos lab is supported by the German Research Foundation (SFB 807, Transport and Communication across Biological Membranes and FOR2251, Adaptation and persistence of the emerging pathogen Acinetobacter baumannii), the DFG-EXC115 (Cluster of Excellence Macromolecular Complexes at the Goethe-University Frankfurt), Innovative Medicines Initiative Joint Undertaking Project Translocation (IMI-Translocation), EU Marie Curie Actions ITN, HFSP and the German-Israeli Foundation (GIF). The SM laboratory is supported by ERATO Murata Lipid Active Structure Project, Japan Science and Technology Agency, the Advanced Research for Medical Products Mining Program of the National Institute of Biomedical Innovation (NIBIO) and HFSP.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.sbi.2015.07.01

    Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces

    Full text link
    We present a phenomenological model of melting in nanoparticles with facets that are only partially wet by their liquid phase. We show that in this model, as the solid nanoparticle seeks to avoid coexistence with the liquid, the microcanonical melting temperature can exceed the bulk melting point, and that the onset of coexistence is a first-order transition. We show that these results are consistent with molecular dynamics simulations of aluminum nanoparticles which remain solid above the bulk melting temperature.Comment: 8 pages, 5 figure

    VPS: Excavating high-level C++ constructs from low-level binaries to protect dynamic dispatching

    Get PDF
    Polymorphism and inheritance make C++ suitable for writing complex software, but significantly increase the attack surface because the implementation relies on virtual function tables (vtables). These vtables contain function pointers that attackers can potentially hijack and in practice, vtable hijacking is one of the most important attack vector for C++ binaries. In this paper, we present VTable Pointer Separation (vps), a practical binary-level defense against vtable hijacking in C++ applications. Unlike previous binary-level defenses, which rely on unsound static analyses to match classes to virtual callsites, vps achieves a more accurate protection by restricting virtual callsites to validly created objects. More specifically, vps ensures that virtual callsites can only use objects created at valid object construction sites, and only if those objects can reach the callsite. Moreover, vps explicitly prevents false positives (falsely identified virtual callsites) from breaking the binary, an issue existing work does not handle correctly or at all. We evaluate the prototype implementation of vps on a diverse set of complex, real-world applications (MongoDB, MySQL server, Node.js, SPEC CPU2017/CPU2006), showing that our approach protects on average 97.8% of all virtual callsites in SPEC CPU2006 and 97.4% in SPEC CPU2017 (all C++ benchmarks), with a moderate performance overhead of 11% and 9% geomean, respectively. Furthermore, our evaluation reveals 86 false negatives in VTV, a popular source-based defense which is part of GCC

    Salt-induced changes of colloidal interactions in critical mixtures

    Full text link
    We report on salt-dependent interaction potentials of a single charged particle suspended in a binary liquid mixture above a charged wall. For symmetric boundary conditions (BC) we observe attractive particle-wall interaction forces which are similar to critical Casimir forces previously observed in salt-free mixtures. However, in case of antisymmetric BC we find a temperature-dependent crossover from attractive to repulsive forces which is in strong contrast to salt-free conditions. Additionally performed small-angle x-ray scattering experiments demonstrate that the bulk critical fluctuations are not affected by the addition of salt. This suggests that the observed crossover can not be attributed alone to critical Casimir forces. Instead our experiments point towards a possible coupling between the ionic distributions and the concentration profiles in the binary mixture which then affects the interaction potentials in such systems.Comment: 5 pages, 4 Figure
    • …
    corecore