
Numerical Algorithms 8(1994)293-312 293

Parallelism across the steps in iterated Runge-Kutta
methods for stiff initial value problems*

P.J. van der Houwen, B.P. Sommeijer and W.A. van der Veen
CW/, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Communicated by J.C. Butcher
Received 26 November 1993; revised 3 September 1994

For the parallel integration of stiff initial value problems (IVPs), three main approaches can
be distinguished: approaches based on "parallelism across the problem", on "parallelism across
the method" and on "parallelism across the steps". The first type of parallelism does not require
special integration methods and can be exploited within any available IVP solver. The method
parallel approach received some attention in the case of Runge-Kutta based methods. For
these methods, the required number of processors is roughly half the order of the generating
Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is
about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP
solver based on predictor-corrector iteration. Most step-parallel methods proposed so far
employ a large number of processors, but lack the property of robustness, due to a poor con
vergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The
step-parallel iteration process proposed in the present paper is less massively parallel, but
turns out to be sufficiently robust to solve the four-stage Radau IIA corrector used in our
experiments within a few effective iterations per step and to achieve speed-up factors up to
10 with respect to the best sequential codes.

Keywords: Numerical analysis, Runge-Kutta methods, parallelism.

Subject classification: G. I. 7.

1. Introduction

Recently, various attempts have been made to solve stiff initial value problems
(IVPs)

y'(t) =/(y(t)), y(t0) =y0 , y, /E JRd, (1.1)

on parallel computers. Using the familiar terminology of parallelism "across the
problem", "across the steps" and "across the method", we mention the problem
parallel methods based on wave form relaxation (cf. the survey paper of Burrage

* The research reported in this paper was partly supported by the Technology Foundation (STW) in
the Netherlands.

©J.C. Baltzer AG, Science Publishers

294 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

[3]), the step-parallel methods of Bellen and coworkers [1,2] and Chartier [6], and
the method-parallel solvers proposed in [10] based on parallel iteration of
Runge-Kutta (RK) methods. To some extent, these three types of parallelism
are orthogonal in the sense that they can often be combined. In this paper, we
shall be concerned with step-parallelism.

Our starting point is a stiff IVP method that is both highly accurate and highly
stable. This method is used as a corrector that is solved to convergence using
parallel iteration techniques. In the selection of a suitable corrector, we are auto
matically led to the classical implicit Runge-Kutta methods such as the Radau
IIA methods. These methods fulfil the requirements of accuracy and stability
and belong to the best correctors for stiff problems. For the iteration method we
choose the PDIRK (Parallel Diagonally Implicit RK) approach developed in [10]
that solves the RK corrector by diagonally implicit iteration using s processors, s
being the number of stages of the corrector. In [10], we advocated alternative
correctors (called Lagrange correctors) which possessed stage orders+ 1, whereas
s-stage Radau methods have only stage orders. Since the stage order is important
for the accuracy in many stiff problems and because the number of processors
equals s, the Lagrange correctors may have advantages if the number of processors
is small. However, recent developments indicate that the number of processors is no
longer an important issue. Therefore, we adopt the Radau IIA methods as the
correctors to be used in this paper. Using a predictor based on extrapolation of
preceding stage values and the four-stage Radau IIA corrector, we obtained for
the PD IRK approach a speed-up factor of about 2 with respect to the best sequen
tial codes for stiff problems, viz. the variable order LSODE code and the fifth-order
RADAU5 code [9]. An interesting feature of the PDIRK-based code (called
PSODE in [16]) is the highly efficient performance of high-order correctors in the
low accuracy range. Hence, assuming that sufficiently many processors are avail
able, we may equally well use a Radau corrector with more than four stages with
out increasing the sequential costs, while the high order is effective both in the low
and high accuracy range.

A drawback of the PD IRK methods is that the number of iterations needed to
achieve corrector accuracy is still high (about the order of the corrector). To reduce
the number of iterations, we introduced preconditioning into the PD IRK methods
by which the number of iterations reduces substantially (cf. [11]). In this paper, we
apply step-parallelism to the PDIRK methods. The analysis given here partly
parallels the derivations in [13] for nonstiff problems.

2. Parallelism across the steps

Following [13], we write the RK method in the General Linear Method (OLM)
form introduced by Butcher [4] (see also [5, p. 340]):

Yn = (E ®Id) Yn-1 + hn(A ®Id) F(Yn), n = 1, ... , N. (2.la)

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 295

Here, hn denotes the stepsize tn - tn-1' the matrix A contains the RK parameters,
and F(Yn) contains the derivative values (J(Yn)), where Yn,;, i = 1,2, ... ,s,
denote the d-dimensional components of the stage vector Yn. In this paper we
will assume that (2.1 a) possesses s implicit stages and that the last stage corre
sponds to the step point tn (e.g. Radau IIA type methods). The firsts - 1 stage
vector components Yn,i represent numerical approximations at the intermediate
points tn-I + c;hn, i = 1, 2, ... ,s - 1, where c = (c;) = Ae, e being the vector with
unit entries. In (2.1 a), the matrix Eis of the form

0 0

£ ·-.- (2.1 b)

0 0

the matrix Id is the d-by-d identity matrix, ®denotes the Kronecker product, and
we define Y0 = e ® y 0 . In the following, the dimension of I and e may change, but
will always be clear from the context.

We approximate the solution Yn of (2.1) by successive iterates Y~j) satisfying the
iteration scheme

Y~ 1 l defined by a predictor formula,

y~j) - hn(D ® Id)F(Y~j)) = (E ®Id) y~~(~-l,j)) + hn((A -D) ® Jd)F(Y~j-l)),

j = 2, ... ,m(tn), (2.2)

where n = 1, 2, ... , N and yJn = e ® y 0 for all j. The predictor formula and
the integer-valued function q(n, j) will be discussed below. The number of itera
tions m(tn) performed at tn is defined by the condition that for j = m(tn) the iterates
Y~ 1) numerically satisfy the corrector equation (2.1) (evidently, if the iterates y~J)
satisfying (2.2) converge to fixed vectors Vn as j _, oo, then Vn = Yn)· The matrix D
will be assumed to be diagonal with s positive diagonal entries. In the case of the
s-stage Radau IIA correctors (s = 2, 3, 4), suitable matrices D = Ds have been
derived in [10]. For future reference, these matrices are here reproduced:

- _1_ (20 - 5\1'6
D 2 - 30 0 12 +0Jv'6}

4365
0 0

13624

D3= 0
1032

0 (2.3)
7373

0 0
1887
--
5077

296 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

3055
0

9532
0 0

0
531

0 0
5956 D4= 1471

0 0
8094

0

0 0 0
1848
7919

Irrespective of the definition of the function q(n, j), the correction formula (2.2)
possesses parallelism across the method, because the diagonal structure of the
matrix D enables us to compute the components of y~n in parallel. In addition,
a suitable definition of the function q(n, j) may determine an ordering by which
the iterates y~n are computed that facilitates parallelism across the steps. We
shall discuss various options.

2.1. Order of computation of the iterates

The conventional PC approach is defined by

q(n,j) = m(tn),

for all n andj. By this definition, the only possibility is to compute first the iterates
Y U) . - 1 2 () h . yU J • - 1 2 () Th. d . 1 ,J - , , ... , m t1 , next t e iterates 2 ,J - , , ... , m t2 , etc. is or enng
generates the PDIRK method of (12] and (10]. Thus, representing the iterates by
points in the (n, j)-plane, the PD IRK method computes the iterates column-wise.
Obviously, this method does not allow for parallelism across the steps. If the pre
dictor formula defining Y~ 1 J requires the same sequential costs as the correction
formula in (2.2), then the sequential computational complexity of the PDIRK
method is given by Nseq = 'En m(tn), Nseq denoting the number of implicit systems
to be solved.

A second option defines

q(n,j) =j- I, j > 1. (2.4)

In this case, there are various possibilities in the ordering by which the iterates can
be computed, leading to the same set of iterates. For example, it can again be done
column-wise, but also row-wise. In the latter case, the iteration scheme { (2.2), (2.4)}
may be considered as Jacobi-type iteration possessing a large degree of parallelism
across the steps, because for fixed j, all iterates y~il, n = 1, 2, ... , N, can be com
puted concurrently. Therefore, it will be called the PDIRKAS J method (PDIRK
Across the Steps using Jacobi iteration). The sequential computational complexity
of the PDIRKAS J method is reduced to the sequential costs of computing all
initial iterates Y~'l and the sequential costs of solving maxn{ m(tn)} - l implicit sys
tems. In actual application, one wants to limit the sequential costs of the predictor
formula. In the extreme case, one sets Y~'J = e 0 y0 for all n, so that Nseq =

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 297

maxn{ m(tn)} - 1. The PDIRKAS J method using this strategy has similarities with
the step-parallel methods studied by Bellen and co-workers [1,2]. However, such a
PDIRKAS J method is expected to exhibit poor convergence due to the inaccuracy
of ypl as n increases and can only be applied on small subintervals (windows). A
more robust approach computes Y~ 1 l by a predictor formula of at least order one
that is sufficiently stable (see section 2.2). Assuming that this predictor formula
requires the same sequential costs as the correction formula in (2.2), the total
sequential computational costs are given by Nseq = N - 1 + maxn{ m(tn)}. Initi
ally, the number of processors needed in this strategy is sN. However, in an
actual implementation, iteration at a particular point tn will be stopped as soon
as the corrector solution is obtained within some given tolerance (see section 4),
so that the number of processors needed will gradually decrease.

Convergence will often be improved substantially by defining

q(n,j) =}. (2.5)

Again, many algebraic equivalent orderings are possible (i.e., orderings that
generate the same set of iterates). But now, neither the column-wise, nor the
row-wise ordering does allow for step-parallelism. The only ordering by which a
certain amount of step-parallelism is achieved, computes the iterates along the
diagonals n + j =constant, that is, all iterates y~Jl with n + j constant are com
puted concurrently. If we again restrict our considerations to predictor formulas
that are equally expensive as the correction formula and if we assume that the itera
tion process at the end point of the integration interval is stopped only if iteration at
all preceding step points has converged, then the total sequential computational
costs are now given by Nseq = N - 1 + m(t N), where again the number of proces
sors is at most sN (but usually less than sN as we saw in our previous discussion
of the Jacobi iteration strategy). The iteration scheme defined by (2.5) may be con
sidered as Gauss-Seidel-type iteration and the corresponding integration method
will therefore be called the PDIRKAS GS method. We remark that the PDIRKAS
GS method {(2.2), (2.5)} is the stiff version of the PIRKAS GS method developed
in [13].

In the remainder of this paper, we analyse the PD IRK.AS J and PDIRKAS GS
methods.

2.2. The predictor formula

There are several possibilities in defining a predictor formula for the PDIRKAS
method. An implementationally convenient choice defines Y~ 1 l by applying a
backward differentiation formula (BDF) to the preceding iterate Y~~1 to obtain
the implicit stage vector predictor formula

y(I) - h (D* n-. I) F(y:Ul) = (E* n-. I) y(ll n n '<Y d n '<Y d n-11 (2.6)

where D* is assumed to be diagonal. If we choose D* = D, then we can achieve
predictor order q = s - 1, while the predictor formula and the correction formula

298 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

share the same LU decomposition. If both D* and E* are defined by order condi
tions, then we have order q = s. However, we need an additional set of s processors
in order to compute the LU-decompositions for the predictor formula concurrently
with those for the correction formula.

An alternative to (2.6) defines Y~ 1 l by applying a BDF to preceding step values
(E©la)Y~~1 , (E©la)Y~~2 , •••• For example, we may define the step point pre
dictor formula

Y(Ll -h (D* '°'l)F(Y(ll) = (E '°'/)Y(ll + (E '°'l)Y(t) n n IOJ d n 1 10J d n-1 2 IOI d n-2' (2.7)

where D* is again diagonal, and where the firsts - 1 columns of £ 1 and £ 2 vanish.
Locally, this formula is at most third-order accurate. If D* = D, then only second
order local accuracy can be achieved.

3. Stability and convergence

The stability region and the convergence region of the PDIRKAS methods
will be discussed for the familiar basic test equation y'(t) = .>..y(t), where). is
assumed to run through the spectrum of 8f/8y. With respect to this test
equation, the stability properties of the PDIRKAS method are determined by
the stability of the predictor-corrector pair and the convergence properties of
the iteration process. Unlike the situation in conventional PC methods, step
parallel methods as considered here, require the predictor to be stable for inte
gration over the whole interval (row-wise ordering of the iterates). Assuming
that the underlying corrector is unconditionally stable (with respect to the basic
test equation), the stability region of the PDIRKAS method is the intersection of
the region of convergence of the correction formula and the stability region of
the predictor formula. At first sight, the stage value predictor formula (2.6) is
more attractive, because of its higher order (we recall that the predictor order q
equals s or s - 1), whereas the step point predictor formula (2. 7) is at most
second-order accurate. However, (2.6) is less stable than (2.7). To see this, we
consider the case where all coefficients are determined by order conditions. Further
more, let the stepsizes be constant, i.e. hn = h. Then, each of the s components
of Y~ 1 l defined by (2.6) may be considered as the result of applying an s-step BDF
with the s + 1 abscissas {tn-t + cih, i = 1, ... ,s; tn-I + h + ckh} where k = 1, ... ,s.
In the case (2.7), each component of Y~ 1 l is defined by a two-step BDF with
abscissas {tn_2,tn_2 +h,tn_2 +h+ckh} where k= 1, ... ,s. BDFs with non
uniformly distributed abscissas have been investigated in [8] and were shown to
lead to poor stability regions if the spacing of the abscissas is increasing. Since in
general the spacing of the last two abscissas in formula (2.6) is relatively large
fork > 1, we cannot expect that (2.6) is sufficiently stable, whereas (2. 7) is expected
to be L-stable, because its stepsizes are nonincreasing. We also considered the case
of (2.6) with D* = D and we did prove the existence of a family of first-order

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 299

predictors which are L(a)-stable for the two-, three- and four-stage Radau IIA
correctors using the matrices D as given in (2.3). For example, for the four-stage
Radau IIA corrector we computed the angle a and found a ~ 70°. Because the
stability of the predictor formula is crucial in step-parallel methods, we decided
to use the second-order, L-stable step point predictor formula (2.7) with D*, E 1

and E2 defined by order conditions.

3.1. Region of convergence of the correction formula

In this section, we shall derive the region of convergence for the recursion
(2.2) when applied to the test equation. Let us define the stage vector iteration
errors

~Ul ·= yUl _ y
"n · n n·

Subtracting (2.1) and (2.2), we find the linear recursion

€(}) = K E(q(n-l,j)) + Z €(}-!)
n n n-1 n n '

Kn := (/ - ZnDt 1 E,

Zn := ZnD(J - ZnDt1(D- 1A - /),

Zn :=)..hn,

(3.1)

(3.2)

where n = 1, ... , N. We shall study the convergence of the iteration error
vectors

(3.3a)

E(j)
n

In particular, we are interested in the rate of convergence of the error vectors as
function of n. The recursion (3.2) can be represented in the form

(3.3b)

where in the case of the PDIRKAS J and PDIRKAS GS methods the n-by-n block
iteration matrix Q(z) is respectively given by

Z1 0 0 0

Kz Z2 0 0

Q1(z) := 0 K3 Z3 0

0 0 K4 Z4

300 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

Z1 0 0 0

K2Z1 Z2 0 0

Qas(z) := K3K2Z1 K3Z2 Z3 0 (3.4)

K4K3K2Z1 K4K3Z2 K4Z3 Z4

If all matrices Zi in (3.4) are nondefective, then the spectrum of the matrix Q(z)
consists of the eigenvalues of then matrices Zi. This observation leads us to the
condition of convergence

p(z;D(I - z;Dt1 (D-1 A - /)) < 1, i = 1, ... , n,

where p(.) denotes the spectral radius function. This condition is identical to that
of the PDIRK method. Constant stepsize plots of the convergence region C :=
{z:p(zD(I-zDt1(D- 1A-I)) < l} for the Radau IIA correctors of orders
p = 3, 5 and 7 reveal that the whole left halfplane is contained in C. Hence, the
Radau IIA based PDIRKAS J and PDIRKAS GS methods may be considered
as "A-convergent". Thus, we may conclude that using these Radau IIA correctors
leads to PDIRKAS methods whose stability region is completely determined by the
stability region of the predictor.

3.2. Rate of convergence

Although the regions of convergence of the PDIRKAS and PD IRK methods are
identical, the rate of convergence of the PDIRKAS method may be much worse
because of ill-conditioning (or even defectiveness) of the eigensystem of the
iteration matrix Q(z). For example, if we integrate with fixed stepsizes, then Q(z)
possesses s eigenvalues of geometric multiplicity n leading to rather poor conver
gence as n increases. The condition of the eigensystem may improve if all stepsizes
are distinct, but convergence can still be slow.

In order to get insight into the convergence properties as a function of} and n, we
need an estimate for the rate of convergence of the iteration process. In this paper,
we shall adopt a definition as given in [17, p. 88], where the averaged rate of conver
gence of the recursion (3.3) is given by

R(n, j, z) := - log (1 11 Q(z)j II). (3.5)

Let the iteration error associated with Y/j), i = 1, ... , n, be of magnitude 10-t.(j)

(that is, the iterates yiU) and the corrector solutions Y;, i ~ n, differ by Ll(j)
decimal digits). Then, taking logarithms to base 10, the number of iterations j
needed to achieve this is at most

. 1 6.(j) - Ll(l)
J ~ + (. . Rn,; - 1, z)

(3.6)

We shall separately discuss the rate of convergence at the origin (nonstif.f rate of

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 301

convergence), at infinity (stiff rate of convergence), and the rate of convergence at
intermediate points in the whole left halfplane. At the origin, the matrices Q1 and
Q08 can be approximated by

Q1(z) = K + diag (z)L + O(z2),

0 0 0 A-D 0 0 0
E 0 0 DE A-D 0 0

K·-.- 0 E 0 , L:= 0 DE A-D 0
0 0 E 0 0 DE A-D

(3.7a)

Qas(z) = M diag (z) + O(z2),

A-D 0 0 0

H A-D 0 0
M·-.- H H A-D 0 , H := E(A-D), (3.7b)

H H H A-D

and at infinity, we obtain

Q1(z) = Qas(z)

l-D-1A 0 0 0

0 l-D-1A 0 0
.- 0 0 l-D-1A 0 + O(z-1). (3.8)

0 0 0 l-D- 1A

In the following subsections, the maximum norm is used in the definition of
R(n, j, z), and in the tables of computed convergence rates, the underlying
corrector is the four-stage Radau IIA method iterated by means of the matrix
D = D4 as defined in (2.3).

3.2.1. Convergence of nonstiff error components
From (3.7a) it follows that

[Q1(zW = [K + diag (z)L + O(z 2W = Kj + O(z).

Since 11 K j 11 00 equals 1 for j < n and vanishes as j ~ n, we have that

R1(n, j, z) = O(z) for j < n,

R1(n,j,z)=o(]11ogllzlll) forj~n,

(3.9)

(3.lOa)

302 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

whereas (3.7b) immediately reveals that

R05 (n,j,z) = O(l log[lzlll) for all). (3.lOb)

These formulas indicate that with respect to the nonstiff error components the
convergence of Jacobi iteration is unacceptably slow. Therefore, in the remainder
of this paper, we confine our discussions to the PDIRKAS GS method.

Let us consider convergence in more detail for.fixed stepsizes, i.e. zi = z for all i.
From (3. 7b) it follows that

R08 (n, j,z) =-log I z [- log (VII Mi 11 00 + O(z)). (3.11)

The following theorem provides explicit formulas for the asymptotic behaviour
of the nonstiff rate of convergence for large values of j and n, respectively.

Theorem 3.2
For fixed values of n, the nonstiff rate of convergence of the PDIRKAS GS method
satisfies the asymptotic relation

Ras(n,j,z) = -log(p(A-D)[zi)- o(j-1 log(j)) aSj--? 00 and Z-> 0.

(3.12)

If the matrices A and D satisfy the conditions ass < ds < 1 and ask > O
(k = 1, ... , s), then for fixed}

Rcs(n,j, z) ~ - log (n I z I) - log [(l -d,)' 1 j~(~a~ ;.)d, + O(n-•)]

as n --.. oo and z--? 0. (3.13)

Proof
The formula (3.12) immediately follows from the asymptotic formula for the norm
of powers of matrices (see e.g. [17]). Assertion (3.13) can be proved along the lines
of a similar theorem given in [13). According to this proof, it is first shown that

11 Mi [Lxi = II M& !loo + O(ni-I) as n ____, oo, (3.14)

where
0 0 0 0

H 0 0 0

Mo := H H 0 0 H := E(A - D).

H H H 0

Next, it is shown that

[[M6 f loo= ~ni II Hi [[00 + O(nl-I)
).

as n--? oo. (3.15)

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 303

By observing that H satisfies the recursion Hi= (1 - ds)J- 1H, and using the
assumptions ask > 0, ass < ds < 1, we find

llH1 lloo = (I-ds)j-l(l-2ass+ds)·

On substitution into (3.15) and into (3.14) formula (3.13) is immediate.

(3.16)

D

If we consider the error over the whole integration interval, i.e. n = N, then this
theorem shows that the nonstiff rate of convergence Ras rapidly converges to a con
stant value as N increases andj is kept fixed. In this connection, we remark that the
nonstiff rate of convergence of the PD IRK method is given by

RPDIRK(j,z) =-log (\,/llZill) = -logizl-log (Vll(A-D)1 11 00 + O(z)),

(3.17)

showing that the nonstiff rate of convergence RPDIRK behaves as O(log (N)) as N
increases.

3.2.2. Convergence of stiff error components

If z--""* oo, then (3.8) immediately yields the following theorem:

Theorem 3.3
If z --""* oo and if n is finite, then for any corrector (2.1), the rate of convergence of
the PDIRKAS GS method is given by

1 l .
Ros(n,j,oo)=--:-logll(J-D-A) 1 lloo· (3.18) D

J

We remark that the stiff rate of convergence of the PDIRKAS GS method is
identical to that of the PDIRK method and does not depend on n. Table 1 lists
the values for a few values of j.

3.2.3. Convergence at intermediate values of z

The preceding subsections indicate that the stiff and nonstiff rates of convergence
of the PDIRKAS GS method are quite satisfactory, even for larger values of n.

However, as soon as we move away from the origin or from infinity, then the
rate of convergence deteriorates. Tables 2a and 2b respectively list values of
Min {Ros(n, j, z): z::::;; O} and Min {Ros(n, j,z): Re (z)::::; O} for the four-stage
Radau IIA corrector for a few values of n. In the latter case, the minimal rate of

Table I
Stiff RGs(n, j, oo) values for the four-stage Radau IIA corrector.

j =I }=2 }=4 }=8 j = 16 j= 32 j= 00

-0.67 -0.52 0.15 0.82 1.22 1.40 1.60

304 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

Table 2a
Values of Min {R05(n,j,z):z ~ O} andj6 for the four-stage Radau IIA corrector.

j n=l n=2 n=4 n=B

l -0.67 -0.67 -0.67 -0.67
2 -0.52 -0.52 -0.52 -0.54
4 -0.01 -0.25 -0.36 -0.43
8 0.33 0.09 -0.16 -0.33

16 0.52 0.35 0.12 -0.12
32 0.60 0.51 0.35 0.14

}:,.(n) 19 23 31 42
S(n) 1 l.6 2.2 3.1

Table 2b
Values of Min {Ras(n, j,z): Re (z) ~ O} andj6 for the four-stage Radau IIA corrector.

n=l n=2 n=4 n=8

l -0.67 -0.81 -0.94 -1.05
2 -0.52 -0.60 -0.75 -0.90
4 -0.14 -0.38 -0.57 -0.75
8 0.09 -0.12 -0.35 -0.45

16 0.18 0.02 -0.13 -0.29
32 0.23 0.15 0.03 -0.11
64 0.25 0.21 0.14 0.02

h(n) 42 52 69 102
S(n) 1 l.6 2.3 3.1

convergence was always found on the imaginary axis. Tables 2 show that for larger
values of n, the rate of convergence only becomes positive if the number of
iterations is relatively large, particularly in the case of table 2b. The effect on the
corresponding iteration error components is disastrous (even for relatively low
values of n), because these components start to grow exponentially and will only
be damped if j is relatively large. In order to illustrate this, tables 2a and 2b also
list the values of j = it:..(n) given by (3.6) with ti. - b.1 = 10 and z = ze. The
rather large values of it:..(n) as n increases indicate that the iterates may easily
become so bad that we have overflow before the iteration process starts to
converge. Therefore, some strategy should be employed that controls when it is
safe to advance to the next step point (see section 4.3). Finally, we remark that
by means of the values of Jc. we can compute an estimate of the speed-up factor
of PD IRK.AS GS with respect to PD IRK. Setting n = N, the number of sequential
iterations of these methods are respectively given by N + it:..(N) - 1 and NJt:..(1),
resulting in the speed-up factor S(N) = NJt:..(l)[N + Jt:..(N) - l]-1 (notice that
the speed-up factors along the negative and imaginary axis are roughly equal).

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 305

4. Numerical experiments

The PDIRKAS GS method {(2.2), (2.5)} described above was applied using the
four-stage Radau HA corrector equation and the predictor formula (2.7). Since the
number m(tn) of outer iterations needed to solve the corrector equation will
strongly depend on n, we applied a dynamic iteration strategy with stopping
criterium (cf. [13])

t:..Ul = ll(eYE@J)(Y~J-iJ _ y~Jl)ll1 ~ TOL
n ll(eTE@J)Y,\i-l)ll1 "' corr·

In all our experiments, we set TOLcorr = 10- 12 • The number of necessary processors
is determined by the number of step points at which this stopping criterion is not yet
satisfied. The maximal number of processors needed during the integration equals
sKmm where Kmax denotes the maximal number of step points where the stopping
criterion is not yet satisfied. For the inner iteration process for solving the
correction formula in (2.2) we used a modified Newton method which was solved
to convergence.

In addition to the PDIRKAS GS method, we shall also apply the PDIRK
method that may be considered as the PDIRKAS GS method in one-processor
mode. In this paper, we want to compare characteristic properties of the methods
like the rate of convergence and sequential costs, rather than strategy aspects such
as stepsize and error control. Therefore, we restrict the experiments to problems
that can be integrated with fixed stepsizes h = N- 1 T. In a sequel to this paper,
we will develop a stepsize and error control strategy [18].

The calculations were performed using 15-digits arithmetic. The accuracy is
given by the number of correct digits 6., obtained by writing the maximum norm
of the absolute error at the endpoint in the form 1 o-.6.

4.1. Test problems

Our first problem is the well known stability test problem of Prothero and
Robinson

7r=-€-1(y-g(t))+g'(t), y(O)=g(O), O~t~T, (4.la)

where the exact solution equals g(t) and € is a small parameter. Prothero and
Robinson used this problem to show the order reduction of RK methods when€
is small. In our experiments we set

g(t) =cos (t), € = 10-3, (4.1 b)

The second test problem is the "nonlinearization" of problem (4.1):

: = -€-1(y 3 - g(t) 3) + g'(t), y(O) = g(O), 0 ~ t ~ T, (4.2a)

306 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

with exact solutiony(t) = g(t) for all values of the parameter E. As in the preceding
problem, we set

g(t) =cos (t), € = 10-3. (4.2b)

The third test problem is that of Kaps [14]:

dy, (-1) -'c)2 dt = - 2 + € YI + € Y2 ,

dy2 dt = Y1 - Y2(l + Y2), (4.3)

y1(0)=y2(0)=1, O~t~T,

with the smooth exact solution y 1 =exp (-2t) and y2 =exp (-t) for all values of
the parameter E. This problem belongs to the class of problems for which stiffly
accurate RK methods do not suffer order reduction whatever small Eis (cf. [9]).

The test set of Enright et al. [7] contains the following system of OD Es describing
a chemical reaction:

dy (0.013 + 1000y3 0 O)
d = - 0 2500y3 0 y,

t 0.013 0 1000y1 + 2500y2

(4.4a)

with y(O) = (1, 1, O)T. Since we want to use fixed step sizes in our experiments, we
avoided the initial phase by choosing the starting point at t0 = 1. The correspond
ing initial and end point values at t = T = 51 are given by

(
0.990731920827) (0.591045966680)

y(l) ~ 1.009264413846 ' y(51) r::i 1.408952165382 .

-0.366532612659 x 10-5 -0.186793736719 x 10-5

(4.4b)

The final test example is taken from Lambert [15, p. 228]:

(
42.2 50. l -42.1) t = -66.1 -58.0 58.1 y,

26.1 42.1 -34.0

(4.5a)

with y(O) = (1, 0, 2)T. As soon as the fast transient e-501 has died out, the exact
solution is sinusoidal with a slowly increasing amplitude:

(
e1l 10 sin (St) + e-501)

y(t) = e1l 10 cos (8t) - e-501 •

e1l 10 (sin (8t) +cos (8t)) + e- 501

(4.5b)

The eigenvalues of this system are given by -50 and 1/10 ± 8i, hence we are faced
with a stiff problem, the nonstiff solution components of which are nondissipative.

P.J. van der Houwen et al./ Iterated Runge-Kut ta methods 307

As pointed out in Lambert's discussion of the system (4.5), such problems are a
difficult test for L-stable methods like our Radau IIA based PDIRKAS GS
method. As in the preceding example, the initial phase is avoided by starting the
integration at t0 > 0. In fact, we integrated the interval [0.5, 1.5].

4.2. Comparison of the PDIRKAS GS and the PDIRK method

In our first tests, we compare results obtained by the PDIRKAS GS and the
PDIRK method. We apply the PDIRKAS GS in unlimited-number-of-processors
mode and in one-processor mode (by which we generate the PD IRK method). The
sequential computational complexity is measured by the total number Nseq =
N - I + m(t N) of sequential implicit systems to be solved during the integration
process. Furthermore, we define the average number of iterations per step and
the average number of sequential iterations per step by m* := N- 1z:,n m(tn) and

Table 3
Results for the linear Prothero-Robinson problem (4.1) with T = 1.

N 6 Kmax * Nseq
. S(N) m mseq

1 6.3 1 10.0 10 10.0 1.0
2 7.4 2 10.5 13 6.5 1.5
4 8.6 4 12.8 19 4.8 2.2
8 9.8 8 17.3 32 4.0 2.8

16 11.0 13 26.9 59 3.7 3.1

Table 4
Results for the nonlinear Prothero-Robinson problem (4.2) with T = 1.

N 6 Kmax
.

Nseq * S(N) m mseq

1 6.3 1 10.0 10 10.0 1.0
2 7.3 2 9.5 12 6.0 1.6
4 8.5 4 11.3 18 4.5 2.1
8 9.7 7 15.4 28 3.5 2.9

16 11.0 13 22.7 53 3.3 3.2

Table 5a
Results for the Kaps problem (4.3) with l = 10-3 and T = 1.

N 6 Kmax
.

Nseq
. S(N) m mseq

1 5.0 1 12.0 12 12.0 1.0
2 6.4 2 13.0 15 7.5 1.7
4 7.8 4 15.3 22 5.5 2.3
8 9.1 8 20.9 36 4.5 2.8

16 10.3 14 31.4 64 4.0 3.4

308 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

Table 5b
Results for the Kaps problem (4.3) with e = 10-s and T = I.

N l:l. Kmax m• N,eq ' mseq S(N)

1 6.6 1 12.0 12 12.0 1.0
2 8.7 2 10.5 13 6.5 1.6
4 10.8 4 9.3 14 3.5 2.6

Table 6
Results for the chemical reaction problem (4.4).

N l:l. Kmax m' N,eq ' mseq S(N)

1 7.9 1 9.0 9 9.0 1.0
2 9.8 2 7.5 10 5.0 1.5
4 11.8 4 7.0 11 2.8 2.5

Table 7
Results for the nondissipative problem (4.5) with T = 1.5.

N l:l. Kmax m' Nseq ' mseq S(N)

10 5.9 10 18.5 33 3.3 4.7
20 8.1 14 20.7 53 2.6 4.6
40 10.2 21 25.1 85 2.1 4.6
80 12.3 33 30.4 138 1.7 4.8

m;eq := N-1 Nseq• respectively. For the PDIRK method, we obviously have
Nseq = l:n m(tn) and m' = m:Cq = N- 1 Nseq· The ratio of the values of m;eq for the
PDIRKAS GS and PD IRK methods determines the speed-up factor S(N).

Tables 3 to 7 present multi-processor results for the PD IRK.AS GS method and
the speed-up factors S(N). From these results, we conclude that the PD IRK.AS GS
method becomes more efficient as the number of step points N increases and that
the speed-up factors S(N) are in good agreement with the theoretical speed-up
factors listed in tables 2a and 2b.

In order to see the effect oflarger intervals of integration, we repeated the experi
ments for the linear Prothero-Robinson problem (4.l) and the Kaps problem (4.3),
but now on the interval [O, 10]. The results in tables 8 and 9 reveal that the speed-up
factor is much larger than in tables 3 and 5 (for the same stepsize) with a maximal
speed-up factor of about 5, but we also see that the convergence behaviour in the
Prothero-Robinson problem and the mildly stiff Kaps problem now becomes
worse as N becomes too large. This is due to the deterioration of the rate of con
vergence as discussed in subsection 3.2.3. For the Kaps problem with e = 10-8,

table 9b shows that this deterioration does not occur and hence the limiting
value m;eq = 1 is almost obtained.

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 309

'able 8
lesults for the linear Prothero-Robinson problem (4.1) with T = 10.

{ !::i. Kmax. m* Nseq m* seq S(N)

10 6.9 9 17.2 31 3.1 3.6
20 7.7 16 22.4 46 2.3 4.7
40 8.7 29 32.6 77 1.9 5.7
80 10.0 55 69.2 172 2.1 5.2
60 divergence

~able 9a
tesults for the Kaps problem (4.3) with€= 10-3 and T = 10.

{ !::i. Kmax. m* Nseq
.

mscq S(N)

10 9.5 10 22.0 39 3.9 4.l
20 11.6 17 30.6 65 3.3 3.9
40 13.7 30 47.5 110 2.8 4.3
80 15.8 57 92.6 245 3.1 3.8
60 divergence

~able 9b
tesults for the Kaps problem (4.3) with€= 10-s and T = 10 .

..,. !::i. Kmax m* Nseq m~q S(N)

10 9.5 10 20.3 36 3.6 4.5
20 11.6 15 20.l 49 2.5 5.l
40 13.7 21 22.7 75 1.9 5.6
80 16.0 28 24.3 117 1.5 5.9
60 17.5 33 24.8 198 1.2 6.4

L3. Dynamic PDIRKAS GS method

The preceding experiments indicate that the performance of the PD IRK.AS GS
nethod strongly depends on the problem to be solved. Therefore, we should apply
l strategy that controls when it is safe to move to the next time point tn- One
;trategy is to take the local truncation error of the last component of the iterate
Y~~i as a measure for safety (in fact, such a strategy was used in [13] for nonstiff
noblems). However, in the present case of stiff problems, the BDF predictor
:ormula (2.7) often computes highly accurate first iterates Y~ 1 l for all n, so that
)Ontrol of its local truncation error will not be effective. The cause of a potential
)ad performance is a strong initial grow of the iteration error. Hence, an
:i.lternative strategy might be a check on the behaviour of the iteration error,
~.g. by means of the residue of the corrector equation (2.la). If this residue
ioes not grow anymore, then it should be safe to advance to the next step point.

310 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

Let us define the residual function

R~j) := y~j) -(E®ld)Yn'-1 -hn(A ®ld)F(Y~ 1)), (4.6)

where Y,7_ 1 denotes the most recent iterate available at tn-l (this iterate will depend
on j too). One option is to require that for some iteration index i

\\eYR~~k\\ 00 <a\\eYR~~k\\ 00 , i~2, k~l, a~l, (4.7)

before advancing to tn. Here, a is some safety parameter and k determines the point
where the iteration errors are checked. Since the first few iterations at tn-k may
have an erratic behaviour, we should choose k greater than 1. Setting}* (tn-I) equal
to the current iteration index j at tn-1' as soon as the residue at tn-k is suffi
ciently small, we can compute the iterate y~J) according to the formula

y~j) - hn(D 0 Id)F(Y~ 1)) = (E 0 Id) y~~tj'-l) + hn((A -D) 0 Id) F(Y~j-I)),

j = 2, ... , m(tn)· (4.8)

The sequential costs are now proportional to the number

N-1

Nseq = L)J*(tn)) +m(tN)·
n=I

Tables 10, 11and12 are the analogues of tables 8, 9 and 7, respectively. By virtue
of the strategy (4.7), using a= 10-2 and k = 3, divergence of the iteration process is
avoided at the costs of a modest increase of the sequential costs. However, Kmax is
also much lower, which decreases the number of processors substantially.

Table 10
Results for the linear Prothero-Robinson problem (4.1) with T = 10.

N 6. Kmax m* Nseq ' mseq S(N)

10 6.9 7 14.3 31 3.1 3.6
20 7.6 8 16.0 55 2.8 3.9
40 8.8 8 17.5 108 2.7 3.9
80 10.0 8 19.3 230 2.9 3.8

160 11.3 8 19.8 513 3.2 3.6

Table Ila
Results for the Kaps problem (4.3) with€= 10-3 and T = 10.

N 6. Kmax m . Nseq ' S(N) mseq

10 9.5 7 18.4 39 3.9 4.1
20 11.6 10 20.7 65 3.3 3.9
40 13.7 14 23.2 116 2.9 4.2
80 15.8 17 25.4 248 3.1 3.8

160 17.7 9 23.8 532 3.3 3.6

P.J. van der Houwen et al./ Iterated Runge-Kutta methods 311

Table llb
Results for the Kaps problem (4.3) with€= 10-s and T = 10.

N D. Kmax m* Nseq m:eq S(N)

10 9.5 8 17.8 36 3.6 4.5
20 11.6 7 13.8 49 2.5 5.1
40 13.7 9 13.0 76 1.9 5.3
80 15.8 9 10.5 127 1.6 5.0

160 16.9 10 8.9 233 1.5 5.1

Table 12
Results for the nondissipative problem (4.5) with T = 1.5.

N D. Km.ax m• Nseq ' mseq S(N)

10 5.9 8 16.9 34 3.4 4.5
20 8.1 10 16.9 54 2.7 4.5
40 10.2 15 19.0 85 2.1 4.6
80 12.3 20 20.6 138 1.7 4.8

Summarizing, we may conclude that the PDIRKAS GS method using the
strategy defined by (4.7) is rather robust. As to the sequential costs, it follows
from the tables of results, that the effective number of iterations per step for solv
ing the four-stage Radau IIA RK corrector varies from 1.5 to at most 4 iterations
per step. With respect to the PD IRK method, the speed-up factors are in the range
3.5 until 5. Taking into account that the variable step version of the PDIRK
method (viz. the PSODE code described in [16]) is about twice as fast as the best
sequential codes such as LSODE, we may expect that the variable step version of
the PDIRKAS GS method will give rise to speed-up factors in the range 7 until
10 with respect to LSODE. This variable step version will be discussed in a
future paper [18].

References

[l] A. Bellen, Parallelism across the steps for difference and differential equations, in: Numerical
Methods for Ordinary Differential Equations, Lecture Notes in Mathematics 1386 (Springer,
1987) pp. 22-35.

[2] A. Bellen, R. Vermiglio and M. Zennaro, Parallel ODE-solvers with stepsize control, J. Comp.
Appl. Math. 31 (1990) 277-293.

[3] K. Burrage, The search for the Holy Grail, or Predictor-Corrector methods for solving
ODEIVPs, Appl. Numer. Math. 11 (1993) 125-141.

[4] J.C. Butcher, On the convergence of numerical solutions to ordinary differential equations,
Math. Comp. 20 (1966) 1-10.

[5] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and Gen
eral Linear Methods (Wiley, Chichester/New York/Brisbane/Toronto/Singapore, 1987).

312 P.J. van der Houwen et al./ Iterated Runge-Kutta methods

[6] P. Chartier, Parallelism in the numerical solution of initial value problems for ODEs and DAEs,
Thesis, Universite de Rennes I, France (1993).

[7] W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of
ODEs, BIT 15 (1975) 10-48.

[8] C.W. Gear and K.W. Tu, The effect of variable mesh size on the stability of multistep methods,
SIAM J. Numer. Anal. 11 (1974) 1025-1043.

[9] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II: Stiff and Differential Alge
braic Problems (Springer, Berlin, 1991).

[10] P.J. van der Houwen and B.P. Sommeijer, Iterated Runge-Kutta methods on parallel com
puters, SIAM J. Sci. Stat. Comp. 12 (1991) 1000-1028.

[11] P.J. van der Houwen and B.P. Sommeijer, Preconditioning in parallel Runge-Kutta methods for
stiff initial value problems, to appear in CMA (1994).

[12] P.J. van der Houwen, B.P. Sommeijer and W. Couzy, Embedded diagonally implicit Runge
Kutta algorithms on parallel computers, Math. Comp. 58 (1992) 135-159.

[13] P.J. van der Houwen, B.P. Sommeijer and W.A. van der Veen, Parallel iteration across the steps
of high order Runge-Kutta methods for nonstiff initial value problems, to appear in JCAM
(1994).

[14] P. Kaps, Rosenbrock-type methods, in: Numerical Methods for Stiff Initial Value Problems, eds.
G. Dahlquist and R. Jeltsch, Bericht nr. 9, Inst. fi.ir Geometrie und Praktische Mathematik der
RWTH Aachen (1981).

[15] J.D. Lambert, Numerical Methods for Ordinary Differential Equations, (Wiley, New York, 1991).
[16] B.P. Sommeijer, Parallelism in the numerical integration of initial value problems, Thesis,

University of Amsterdam (1992).
[17] D.M. Young, Iterative Solution of Large Linear Systems (Academic Press, New York, 1971).
[18] W.A. van der Veen, Performance of step-parallelism in Runge-Kutta methods for stiff initial

value problems, in preparation (1994).

