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For the parallel integration of nonstiff initial value problems (IVPs), three main approaches can be distinguished: 
approaches based on .. parallelism across the problem", on "parallelism across the method" and on "parallelism across the 
steps". The first type of parallelism does not require special integration methods and can be exploited within any 
available IVP solver. The method-parallelism approach received much attention, particularly within the class of explicit 
Runge-Kutta methods originating from fixed point iteration of implicit Rungc-Kutta methods of" Gaussian type. The 
construction and implementation on a parallel machine of such methods is extremely simple. Since the computational 
work per processor is modest with respect to the number of data to be exchanged between the various processors, this 
type of parallelism is most suitable for shared memory systems. The required number of" processors is roughly half the 
order of the generating Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is about 
a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector 
iteration and requires the processors to communicate after each full iteration. If the iterations have sufficient computa
tional volume, then the step-parallel approach may be suitable for implementation on distributed memory systems. Most 
step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to 
a poor convergence behaviour in the iteration process. Hence. the effective speed-up is rather poor. The dynamic 
step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently 
robust to achieve speed-up factors up to 15. 
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1. lntrodoction 

The last five years have shown an increased interest in solving the initial value problem (IVP) 

y'(t)=/(y(t)), y(to)=yo, y,feR4 (1.1) 

*The research reported in this paper was partly supported by STW (Netherlands Foundation for the Technical 
Sciences). 
• Corresponding author. 

0377-0427/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0377-0427(94)00047-5 



310 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 

on parallel computers. One of the classes of parallel IVP solvers for nonstiff problems that received 
relatively much attention is the class of predictor-corrector {PC) methods based on Runge-Kutta 
(RK) correctors (see, e.g., [2-4, 19,20, 10-14, 17]). As was observed in [11], PC iteration (and in 
fact, all functional iteration methods), when applied to RK correctors, possess automatically 
parallelism across the components of the stage vector iterates, because these components can be 
iterated in parallel. Therefore, we shall henceforth refer to these methods as PI RK methods (parallel 
iterated Runge-Kutta methods [19]). 

Highly accurate correctors are provided by the classical, collocation-based RK methods such as 
the Gauss methods (sometimes called the Kuntzmann-Butcher methods [9] or the 
Butcher-Kuntzmann methods [20], and in this paper referred to as BK methods). Moreover, 
automatic stepsize variation and predictor formulas can be easily obtained by means of the 
collocation polynomial. In [19] numerical results obtained by the PIRK method using the 5-point 
BK corrector were reported. This PIRK method, equipped with the last-step value (LSV) predictor 
and a simple stepsize strategy, already halves the sequential costs when compared with the highly 
efficient, sequential DOPRI8 code [9]. 

However, the number of iterations needed to achieve the corrector accuracy is still high (about 
the order of the corrector). In order to reduce the number of iterations, we introduced in [20] 
preconditioning in the PIRK method and found that the number of iterations reduces substantially 
(cf. [20]). For example, for the often used Arenstorf test problem (cf. [9, p. 127]), preconditioned 
PIRK based on the PC pair consisting of the extrapolation (EXP) predictor and the 4-point BK 
corrector showed an averaged speed-up factor of 4.4 with respect to DOPRI8 in the accuracy range 
of 3 to 8 correct digits. An interesting feature of the iterated RK methods is the highly efficient 
performance of the high-order correctors, also in the low accuracy range. As an illustration, we 
applied the preconditioned {EXP, 13-point BK} PC pair to the Arenstorf problem, and found an 
averaged speed-up factor of 6.7 with respect to DOPRI8, again in the accuracy range of 3 to 
8 correct digits. 

In this paper, we try to reduce the sequential costs by applying "parallelism across the steps" to 
the PIRK methods. In some sense, our approach shows similarities with that of Miranker and 
Liniger [15] and of Nievergelt [16], but is most closely related to the approach of the Trieste group 
(see [1]). The main difference with the Trieste approach is a more robust iteration process 
(Gauss-Seidel type instead of Steffenson), however, at the cost of less massive parallelism. Never
theless, our numerical experiments show that the particular type of PIRK methods Across the 
Steps (PIRKAS methods) developed in this paper often require not more than two sequential 
function calls per step for solving the corrector and give rise to speed-up factors up to 15 when 
compared with the best sequential codes available (i.e., DOPRI8). We shall confine our consider
ations to PIRKAS methods without preconditioning. Introducing preconditioning and extension 
to stiff initial value problems will be subject of future research. 

2. Parallelism across the steps 

We consider implicit, s-stage RK methods written in the form of an (s + 1)-stage General Linear 
Method (OLM), introduced in [5] (see also [6, p. 340]): 

Yn = (E ® I)Yn-1 + h(B ® /d)F(Y.,), n = 1, ... ,N. (2.la) 
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Here h denotes the stepsize, the matrix B contains the RK parameters, and F(Yn) contains the 
derivative values (/(Yn,;)), where Yn.i denote the d-dimensional components of the (extended) stage 
vector Yn (because of the GLM representation (2.la), the RK solution at the step points is lumped 
into Yn). It will be assumed that (2.la) possesses s implicit stages and one explicit stage. The 
component of Yn corresponding to the explicit stage approximates the exact solution at the step 
point tn = tn- i + h. The other stage vector components Yn,i represent numerical approximations at 
the intermediate points tn- 1 + c;h, where c = (c;) = Be, e being the vector with unit entries. In the 
sequel we assume that the last stage is the explicit one, so that the matrices E and B take the form 

0 0 1 

E:= , B := (~ ~} (2.lb) 

0 0 

where A and b present the familiar arrays appearing in the Butcher tableau representation of RK 
methods. Furthermore, the matrix I is the d-by-d identity matrix, Q9 denotes the Kronecker 
product, and we define Y 0 = e ® y 0 • In the following, the dimension of I and e may change, but will 
always be clear from the context. 

Eq. (2.1), henceforth referred to as the corrector, can be solved by the conventional PC iteration 
method which in a programming·like language reads 

FOR n := 1 TON 
FOR j:= 1 TO m 

y~l = (E®J)Y~"!! 1 + h(BQ9J)F(Y~i- 1 \ 
(2.2) 

where m is the number of iterations, Ybm) = e ® y 0 , and Y!,0l is to be provided by a predictor 
formula. Evidently, if (2.2) converges, then it converges to the corrector solution Yn· 

As mentioned in Section 1, the PC method (2.2) has been extensively analysed in a number of 
papers and was called a parallel iterated RK method (PIRK method) in [19] (see also [9, p. 259]). It 
possesses parallelism within the iterations (that is, for each n and j, the components of Y~11 can be 
evaluated in parallel), but, apart from parallelism across the problem, it does not have any further 
parallelism. Hence, the total computational effort consists of Nm evaluations of a full derivative 
vector F(Y~j- l)), but on a computer possessing s processors, the sequential costs of one full 
derivative vector evaluation consists of evaluating just one right-hand side function f of dimension 
d. We shall measure the sequential costs of an explicit method by the total number of sequential 
right-hand side evaluations, where we tacitly assume that sufficiently many processors are available. 
Thus, the sequential computational complexity of the PC method (2.2) is given by Nseq =Nm. 

In order to increase the degree of parallelism in PIRK methods, we have to modify the recursion 
(2.2). The most obvious approach to achieve a high degree of parallelism in IVP methods writes the 
corrector (2.1) in the form G(Y) = 0, where Y represents the vector containing all numerical 
approximations in the whole integration interval, and solves this system for Yby some iteration type 
process. This type of parallelism has been considered by several authors (e.g., see [16, 1]). In the 
case of the RK solver (2.1), Y represents the N stage vectors Yn, n = 1, ... , N. 
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The most simple iteration process for solving G(Y) = 0 can be obtained from (2.2) by interchang
ing the loops for n and j in (2.2): 

FORj:= 1 TO m 
FORn:= 1 TON 

y~> = (E@ I) r,/.:-}l + h(B ® J)F(Y~- 1 >). 
(2.3) 

Here, we have Y~1 = e ® y 0 for j = 0, ... , m - 1. In view of load balancing of the processors, we 
want the sequential computational effort involved with the computation of a single iterate Y~1 to 
be equal for all iterates. Therefore, here and in the following, the costs of computing the prediction 
Y~0 > are assumed to be negligible. Thus, given the initial guesses Y~0>, n = 1, ... , N, first all stage 
vectors Y~1 > are computed concurrently, then all Y~2>, and so on. Hence, having sN processors 
available, the sequential computational complexity of the method (2.3) is given by Nseq = m. 
Method (2.3) resembles Jacobi-type iteration and may be considered as a PIRK method employing 
iteration Across the Steps of Jacobi-type (PIRKAS J method). A drawback of this seemingly 
"cheap" method is its slow convergence or even divergence, due to a poor first iterate y~ll, 
a situation that can easily occur in the case of large integration intervals. This is caused by the fact 
that the prediction Y~0> is either based on mere extrapolation of the initial valuey0 or just an initial 
guess to be provided by the user (note that predictions based on derivative information on 
preceding step points would increase the sequential costs by an amount of O(N)). As a conse
quence, Jacobi-type iteration is only feasible when applied on subintervals (windows). Of course, 
for w windows, the sequential costs will increase to N seq = wm. 

An alternative to Jacobi-type iteration is a more powerful iteration process. When applied using 
the window-strategy just mentioned, we may hope to reduce the number of iterations m to such an 
extent that the sequential costs Nseq = wm are acceptable. In the literature, Steffenson iteration and 
Newton-type iteration have been considered. Full details of the Steffenson process applied to 
a general class of IVP solvers may be found in the papers of Bellen and his coworkers [1]. For 
a discussion of Newton-type iteration, we refer to the thesis of Chartier [7]. 

In the present paper, we shall study Gauss-Seidel type iteration processes for solving the 
corrector Eq. (2.1). Gauss-Seidel iteration possesses a lower degree of intrinsic parallelism than 
Jacobi and Steffenson iteration, but it allows us to compute a much more accurate first iterate Y~1 J. 

2.1. The PIRKAS GS method 

Consider the recursion 

y~> = (E ® I)Y~! 1 + h(B ® J)F(Y~- 11 ), j = 1, 2, ... ,m; n = 1,2,. . ., N. (2.4) 

The only difference with the recursion in the PIRKAS J method (2.3) is the superscript in the first 
term of the right-hand side. By this modification we introduce a dependency in the time direction 
and therefore (2.4) may be considered as a Gauss-Seidel-type iteration process for solving (2.1). The 
iterates defined by (2.4) can be computed according to various orderings. Representing the iterates 
y~> by points in the (n, j)-plane, we may compute them row-wise (j constant) or column-wise (n 
constant) or diagonal-wise (n + j constant). We emphasize that the solutions resulting from these 
orderings are algebraically equivalent. However, from an implementational point of view, of all 
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Fig. 1. Grid of Y~1 iterates in the (n, j)-plane. 

orderings of computation allowed by (2.4), the diagonal-wise ordering possesses maximal 
parallelism, because all iterates Y~1 with n + j constant can be computed concurrently (see Fig. 1). 
Thus, in the diagonal-wise ordering we first compute the iterates labeled by i, next the iterates 
labeled i + l, etc. Notice that an iterate can be computed as soon as its left and lower neighbours 
are available. In comparison with Jacobi iteration, the intrinsic parallelism is reduced consider
ably, but this is compensated by a much faster convergence. 

In the following, we shall analyse and evaluate the performance of the Gauss-Seidel type 
PIRKAS method (2.4) (briefly PIRKAS GS method). In accuracy and stability considerations, it 
will sometimes be convenient to assume that the iterates are computed by the row-wise ordering. 
However, in actual computation, we of course employ the diagonal-wise ordering. 

Fig. 1 suggests introducing the step index i = n + j, where n and j are the time index and 
iteration index, respectively, and writing the correction formula (2.4) as 

y~i-n) = (E ® l)Y~i~i) + h(B ® J)F(Y~-n- l>). (2.5) 

The corresponding computational scheme can be implemented according to 

FOR i := 1 TO m + 1 
FOR n:= OTO i 

CALL correction (i,n) 
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FOR i := m + 2 TO N + m 
FOR n := i - m TO min {i,N} 

CALL correction (i, n) 

where the subroutine correction (i, n) is defined by 

(2.6a) 

IF i = nTHEN 
ELSE 

Compute y~-n) = Y~0 > by means of the predictor formula (see Section 2.2) 
IF n = 0 THEN y~-n> = e ®Yo (2.6b) 

ELSE Compute y~-n> by means of the correction formula 

The method { (2.5), (2.6)} will be referred to as the PIRKAS GS method. The sequential costs are 
Nseq = N + m right-hand side evaluations on sm processors (see Table 1). We remark that the 
parallelism within the correction formula is fine grain compared with the parallelism across the 
steps. Hence, the correction formula (2.6b) is most suitably implemented on a shared memory unit, 
whereas the scheme (2.6a) seems to be more efficient for implementation on distributed memory 
systems. For example, the appropriate architecture would be a network of m workstations, each 
having s shared memory processors. 

2.2. Regions of stability and convergence 

In discussing convergence and stability, it is convenient to assume that the iterates are computed 
according to the row-wise ordering (cf. the discussion at the beginning of the previous section). 
Thus, we assume that first all iterates Y~1 >, n = 1, ... , N are computed, next Y~2>, n = 1, ... , N, etc. 
In order to get insight into the (linear) stability region and the convergence region of the PIRKAS 
GS method, we consider the test equation y'(t) = A.y(t), where A. is assumed to run through the 
spectrum of of/oy. With respect to this test equation, the linear stability properties of the PIRKAS 
GS method are determined by the convergence properties of the iteration process, the stability of 
the corrector and the stability of the first iterates Y~1 >, n = 1, 2, ... , N. Assuming that the underlying 
corrector is A-stable, the stability region of the PIRKAS GS method is the intersection of the 
stability region of the formula defining the first iterate Y~1 > and the region of convergence of the 
correction formula (2.4). 

Table I 
Computational scheme for the PIRKAS GS method (2.6) 

!1 t2 £3 

2 y\ll 
3 r\2> y~l) 

m+l r\"'i jr~-1) y~-2) 

m+2 y~m) y~-1) 

N+ 1 

N+m 

f (l) 
m+ 1 

'y<m> yVi 
N-m+ 1 ,. 
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2. 2. J. Stability region of the first iterate 
We restrict our considerations to one-step predictors based on information from the preceding 

interval (tn- 2, ln - i], that is, Y~11 is computed by means of information coming from the iterate 
Y~12 1 • As already observed, we want all iterations of comparable sequential computational 
complexity, so that we are led to the predictor formula Y~01 = (E: ® J) Y~12 i. to obtain 

Y~11 = (E (8) J)Y~12 1 + h(B® l)F((E: ® J)Y~12 i), n = 1,2, ... ,N, (2.7) 

where E: is a still free, (s + 1 )-by-(s + 1) extrapolation matrix. Obviously, this formula should be 
a sufficiently stable step-by-step method by itself. Thus, the situation is different from that in 
conventional PC methods where only accuracy plays a role, because in that case the corrector is 
(numerically) solved before advancing to the next step point. 

The most simple choice for the free matrix E: in (2.7) sets E: = E for all n (LSV predictor). The 
resulting method (2.7) reduces to the explicit Euler method for the successive components of f~1>, 
the stability region of which is well known. 

An alternative to the "trivial" choice E: = E is to exploit the fact that the underlying corrector is 
based on the collocation principle. This means that the components Yn.i are approximations to the 
exact solution at tn- t + c;h of (at least) orders. Hence, extrapolating the collocation polynomial 
through the values Y~12 1 ,, yields predictions Y~~l of the same (local) order. The corresponding 
predictor will be referred to as the EXP predictor. The order conditions for the EXP predictor are 
given by 

E:(c - ef = (rnc)k, rn := hh" , hn := tn - tn- i. k = 0, 1, ... ,s, 
n-1 

which uniquely define the matrix E*. It can explicitly be expressed in the form 

E: = vu- 1, U := (e, (c - e), ... ,(c - e)5), V := (e,rnc, ... ,(rnc)'). 

The stability region of (2. 7) is obtained by applying it to the test equation with constant stepsize 
h, to obtain 

Y~1 l = EY~12 1 + zBE* Y~12 i. z :=)..h. 

Hence, the stability region of (2.7) consists of the points z where the eigenvalues of the matrix 
E + zBE* are within the unit circle. In Table 2, we have listed the first two decimal digits of the real 
and imaginary stability boundaries of the stability region of (2.7) with E* = vu- 1 for the BK and 
Radau IIA correctors. 

2.2.2. Region of convergence 
We shall derive the region of convergence for the method (2.6) for fixed stepsizes. Let us define 

the stage vector iteration error 

e\i> 

eV> 
e<il := .. w ·- y<il - Y. vn .- n n· 
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Table 2 
Stability boundaries (/J, •• i,[J,ma.J for { (2.7), E* = Vu- 1} 

RK corrector s = 2 

Butcher-Kuntzmann (0.61,0.62) 
Radau IIA (0.92, 0.00) 

s=3 

(0.49, 0.00) 
(0.59,0.61) 

s=4 

(0.44, 0.00) 
(0.49, 0.00) 

s=5 

(0.42, 0.00) 

Subtracting (2.1) and (2.4), we find that s~il satisfies the linear homogeneous recursion 

sc,fl - Es~i~ 1 = zBs~i- 1>, z := J.h. 

Hence, given the initial iteration error e<0J and observing that s~> vanishes, we obtain 

eU+ 1> = zMs<j), M := L -t K, 

where L and K are the N(s + 1)-by-N(s + 1) matrices 

L:= 

I 0 0 

-E I 0 

0 0 0 

0 0 

0 0 

- E I 

K ·-.-

B 0 

0 B 

0 0 

These formulas suggest defining the region of convergence C 

C := {z: lcx(z)I < l}, a(z) := lzlp(L - 1K), 

0 

0 

B 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where p( ·)denotes the spectral radius function. Furthermore, we observe that for any two matrices 
P and Q, the relation 

Q 0 0 0 
I 0 0 0 0 -- l Q 0 0 

PQ Q 0 0 
-P I 0 0 0 0 Q 0 

= p2Q PQ Q 0 

0 0 0 -P I 0 0 Q 
p3Q p2Q PQ Q 

(2.12) 

holds. Applying this relation to the amplification matrix M = L - 1 Kand observing that E; = E, we 
obtain 

B 0 0 0 

H B 0 0 

M= H H B 0 ' 
H := EB = (ebT, 0). (2.13) 

H H H B 
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Table 3 
Spectral radius p(A) for RK correctors 

RK corrector s = l s=2 s=3 s=4 s=5 

Butcher- Kuntzmann 0.50 0.29 0.22 0.17 0.14 
Radau IIA 1.00 0.41 0.28 0.20 0.16 

Notice that the matrix M is singular because the (s + l)st, (2s + 2)nd, etc. columns have zero 
entries. This singularity can easily be removed if we redefine the error recursion (2.9) by omitting 
the (s + l)st, (2s + 2)nd, etc. rows and columns of M, and the (s + l)st, (2s + 2)nd, etc. entries of eUl. 

Let us denote this "'reduced" matrix by M. Then, it is easily verified that M can still be represented 
by (2.13), provided that the matrices B and H are replaced by A and C := ebT, respectively. 
Evidently, the matrices M and A have an equal spectral radius, which leads to the following 
theorem. 

Theorem 2.l. With respect to the test equation y'(t) = .Ay(t), the region of convergence of the 

PIRKAS GS method (2.6) is given by C := {z: p(zA) < l}. 

Recalling that Jc is assumed to run through the spectrum of 8f/8y, this theorem leads us to the 
convergence condition 

1 
h~ . 

p(of/oy)p(A) 
(2.14) 

In Table 3, we have listed the values of p(A) for the BK methods and Radau IIA methods with 
s = 1 , ... , 5 (we remark that the region of convergence of the PIRKAS GS method, and therefore 
the condition of convergence, is the same as those of the PIRK method). Because of the relatively 
small values of p(A), the stepsize restriction is not severe. A comparison with Table 2 reveals that 
the stability condition imposed by the predictor is considerably more severe than the convergence 
condition of the corrector. 

The preceding considerations are "asymptotic" considerations, that is, the convergence condi
tion is only relevant for sufficiently many iterations. In order to get insight into the convergence in 
the initial phase of the iteration process, we now consider the convergence factor. This will be the 
subject of the next section. 

2. 3. The convergence factor 

The preceding considerations suggest defining the (averaged) convergence factor by the quantity 

a(N, j) := lz\.jilMlif co = llc~T ~ "'" (2.15) 

where T denotes the length of the integration interval. First, we derive the convergence factor for 
j --> oo and for N -+ oo. 
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Theorem 2.2. For any corrector (2.1), the convergence factor rx.(N, j) satisfies the relations 

rx.(N,j) =IA.IT~+ O(j- 1) as j - oo, 

rx.(N,j) =IA.IT i l\b~,llo:i + O(N- 1) as N - oo. 
1· 

(2.16a) 

(2.16b) 

Proof. Relation (2.16a) is immediate from the asymptotic formula \IMiJl 1'i = p(M) + O(j- 1) = 
p(A) + O(j- 1) as j - oo. Relation (2.16b) can be proved by an analysis of the structure of the 
matrices Mi. In order to get some idea of this structure, we consider the case j = 2. By observing 
that the matrix C in the lower triangle of M is idempotent, we find 

Ai 

CA +AC 

0 
A2 0 

M2 = CA+ AC+ C CA +AC A2 0 

CA+ AC+ 2C CA+ AC+ C CA+ AC A2 0 

Evidently, the maximum norm of M2 is determined by its last row of submatrices. Hence, for any 
matrix A, the maximum norm of this row is given by II ( (N - 2)C, (N - 3)C, ... , 2C, C) II 00 + 0 (N) 
as N - oo. From the definition C = eb T it follows that 

l\M2 \l 00 = t N 2 1\bTlloo + O(N) as N - ro. 

Since the limiting value of the norm does not depend on the matrix A, we conclude that 
llM2 \lc:o = \IM~\I 00 + O(N), where M0 is obtained from M by replacing A with 0. More generally, it 
can be shown that 

llMilloo = llMtlloo + O(Ni- 1) as N - ro 

and using the relation 

f n" = - 1-N11 + 1 + O(Nq) as N - oo, 
n=l q + 1 

it can be shown by induction that 

llM~l\ 00 = ~ NJl\bT\lro + O(Ni- 1) as N - oo. 
}· 

The result (2.16b) is now readily proved. D 

It turns out that the asymptotic value for N - oo is already reached for relatively small values 
of N, whereas the asymptotic value for j - oo takes a considerable number of iterations (see 
Table 4 where values of rx.(N,j)/(IA.IT) are listed for the four-stage BK and Radau IIA correctors). 
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Table 4 
Values of a(N,j)/(l.A.IT) for the BK and Radau IIA correctors with s = 4 

RK corrector j N = 1 N= 2 N =4 N =8 N = 16 N-> oo 

Butcher-Kuntzrnann l 0.93 0.97 0.98 0.99 l.00 1.00 
2 0.66 0.68 0.70 0.70 0.70 0.71 
4 0.42 0.44 0.44 0.45 0.45 0.45 
8 0.25 0.26 0.26 0.26 0.26 0.26 

16 0.21 0.14 0.14 0.15 0.15 0.15 
32 0.18 0.12 0.08 0.08 0.08 0.08 
j-+ OC; 0.17 0.09 0.05 0.03 0.01 0.00 

Radau IIA 1 1.00 l.00 1.00 1.00 1.00 1.00 
2 0.71 0.71 0.71 0.71 0.71 0.71 
4 0.45 0.45 0.45 0.45 0.45 0.45 
8 0.28 0.27 0.27 0.25 0.25 0.25 

16 0.24 0.16 0.15 0.15 0.15 0.15 
32 0.22 0.13 0.09 0.08 0.08 0.08 
j-+ 00 0.20 0.11 0.06 0.04 0.02 0.00 

Finally, we consider the condition of the correction formula (2.4). Since these correction formulas 
couple the iterates at all step points tno n = 0, 1, ... , N, their condition may play a role in actual 
computation. We shall derive the condition of (2.4) in the case of the model equation y' = A.y. For 
this equation, (2.4) reduces to 

y~i> = EY~~ 1 + zBY~ - I), z := A.h. (2.4') 

Following the approach of Section 2.2 for the iteration errors e~>, we drop the last component of 
the iterate Y~>, for n = 1, ... , N, and we combine the "reduced" iterates y~i> in one vector Y(j). ln an 
analogous way as we derived (2.9), we are led to the recursion yu+ 11 = z.AifyU>, where we assumed 
the initial values of the IVP to be zero. Suppose that Mis perturbed by the matrix fJP Mand yui by 
the vector bQY<i>, where P and Qare perturbation matrices with Q diagonal, and where fJ is a small 
positive parameter. Then, instead of yo+ ll, we obtain the perturbed iterate Y(o) = z(M + oPM) 
(I + fJQ)Y(j). Hence, defining the condition number K(M) := llMll llM- 1 11, 

l'f(fJ) - yu+ 1)11 = bllAPM + MQ)Ywll + O(zc52) = bi!(P + MQM- 1)ru+ii11 + O(zfJ2) 

(2.17) 

Thus, the magnitude of K(M) estimates the effect of perturbations of yw on y~i+ ll. With respect to 
the maximum norm II · II 00 , the following result can be derived. 

Theorem 2.3. For the BK corrector the condition number K«>(M) := llMll:xi llM- 1 lloc is given by 
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Table 5 
Condition number ""'(M°) for RK correctors 

RK corrector s N = 1 N =2 N =4 N =8 N = 16 N-+ oo 

Butcher-Kuntzmann 2 7 38 172 728 2991 12 N 2 

3 22 99 421 1738 7059 28 N2 

4 45 198 827 3377 13647 55 N 1 

5 80 343 1416 5753 23192 93 N 2 

Radau IIA 2 7 18 36 72 144 29 N 
3 18 42 84 169 337 11 N 
4 34 76 153 306 611 38 N 

If the corrector is L-stable, then 

Koo(M) = ( \\A\\co + N - 1) \\(A- 1CA- 1, A- 1)\\oo ~ N ll(A- 1CA- 1,A- 1) \lco· (2.18b) 

Proof. Since A is nonsingular, it can be verified that ]IJ- 1 is of the form 

A-1 0 

-F A-1 0 

Nr 1 = FG -F A-1 0 
' 

F := A- 1edT, G := edT -I, dT := bTA-1. 

-FG2 FG -F A-1 0 

Using the relation FGi = yiF, where y := dTe - 1, we conclude from (2.13) and (2.19) that 

K 00 (M) = (l\A\\co + N-1) \IQl\co, Q := (yN- 2 F,yN- 3F,yN- 4 F, ... ,yF,F,A-l). 

Hence, 

- 11(1 - ly\N-1 -1)11 
K 00 (M) = ( \\A\\<X.l + N - 1) l - \y\ F, A 

00 
• 

From the stability function R(z) at infinity, that is from 

R(z) := 1 + zhT(l - zA)- 1e = 1 - bT A- 1e + O(z- 1) as z --+ ro, 

(2.19) 

we see that y = hT A- 1e - 1 = - R( co). Hence, for BK methods we have y = ( - l)s+ 1, and for all 
L-stable methods we have y = 0. This leads us straightforwardly to the assertion of the 
theorem. D 

This theorem shows that for large N, BK correctors possess less well-conditioned amplification 
matrices than Radau HA correctors (see also Table 5), which may result in a larger total number of 
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function calls as N increases. However, from a practical point of view, it is the number of sequential 

function calls Nseq = N + m that is important. Hence, for large N, the conditioning of the 
amplification matrix will not influence the sequential costs. 

3. Implementation considerations 

In an actual implementation, we are faced with aspects as the stability of the predictor 
formula, the number of iterations needed to reach the corrector solution, stepsize control, adapting 
~he algorithm to a given number of processors, etc. In this section, we shall briefly discuss these 
issues. 

3.1. The predictor 

In Section 2.2, we considered the accuracy and stability of formula (2.7) for the first iterate y~1 >. 
For larger stepsizes, this formula may lack both accuracy and stability. To circumvent this 
situation, we need some control on its quality. If necessary, we continue the iteration until y~i~ 1 has 
the required properties to serve as a starting point to move to the next step point for computing 
Y~1 >. This can be achieved by using in (2.7) the predictor formula 

f (0) = (£* /Q\ J) yU*> 
n n'<Y n-1, (3.1) 

to obtain 

Y~1 > = (E ®I) y~_::>1 + h(B ® I)F((E: ® /) y:f_::\ ), n = 1, 2, ... , N, (3.2) 

where j* is such that Y~..'.:l 1 is of sufficient quality for increasing the time index n. Thus, j* is 
dynamically determined during the integration process, and, in general, j* will depend on tn. For 
the extrapolation matrix E: we may choose E: = E (LSV predictor) or E: = vu- 1 (EXP 
predictor, see Section 2.2.1). 

3.2. Dynamic determination of j* and m on a given number of processors 

If j* and mare dynamically determined during the integration process, then these quantities will 
become functions of tn. The functions j*(tn) and m(tn) depend on the number of processors 
available. In this subsection we will describe the strategy by which these functions will be 
determined. For clarity reasons, this description will be given for the "regular" part of the 
integration interval and needs slight adaptation at the start and at the end of the interval, since then 
fewer points (in time) are involved. 

For simplicity, iterates will be indicated by Y~1), in spite of the fact that the iteration index j has 
different actual values at different time points, that is, the notation ignores that j depends on n. 

Suppose that we have at our disposal a network of P processor- units where each unit contains 
s processors (see the discussion of the computational scheme (2.6)). Then, instead of iterating on a_ll 
N iterates y~i\ n = 1, ... , N, simultaneously, we shall iterate on the last P iterates Y~1 >, 
v = n - P, ... , n - 1, that do not yet have the corrector accuracy. In fact, we only proceed to the 
next step point if Y:/2 P has the corrector accuracy and if Y~j2 1 is a safe starting point for computing 
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Y~0>. Given a value of P, we need a criterion that signals when the time level can be increased. For 
that purpose, we control the correction 

A<il = ll(eTE®J)(Y~i:/> __ y~i~ill 1 
n-i ll(eTE@J)Y~:/ 1 111 

(3.3) 

Thus, first, we require that at tn -P the corrector is approximately solved by the iterate y~i~ Pleading 
to the condition 

(3.4a) 

As soon as this condition is fulfilled, we set m(tn-P) = j. Next, we require that the step point value at 
tn- l is sufficiently accurate to serve as the basis for a prediction at the next time level, resulting in 

(') L1/ ~ TOLpred. (3.4b) 

for v = n - 1. Since we observed that the corrections L1 ~i> are not always a monotonically 
increasing function of v, we imposed-as an extra safety factor-the condition that the iterates y~i>, 
v = n - P + 1 , ... , n - 1 should also satisfy (3.4b). Together, these conditions determine the value 
ofj*(tn- 1). Notice that the dynamic PIRKAS GS method will perform like the PIRK method if 
TOLpred -o. 

Since the computational costs of the predictor formulas (3.1) can be ignored, the sequential costs 
Nseq of the dynamic PIRKAS GS method satisfy 

N-1 

Nseq ~ max m(tn) + L j*(tn)· 
lE;nE;N n=t 

Thus, the sequential costs are completely determined by the m(tn) and j*(t11) values. Usually, 
N will be large with respect to maxn m(tn), so that I.nj*(tn) is the essential quantity determining the 
sequential costs. 

3.3. Convergence of the dynamic PIRKAS GS method 

In the dynamic PIRKAS GS method, the correction formula (2.4) should be adapted according 
to 

y~> = (E ® l)Y~q~n1- 1 ·m + h(B ® I)F(Y~i- tl), 

j = l, .. ., m(tn); n = 1, 2, ... , N, (3.5) 

q(n, j) := j + j*(tn) - 1, 

where y~l = y~m<rnll for j > m(tn). Notice that by setting j*(tn) = 1 and m(tn) = m for all n, we retain 
the recursion (2.4). The iteration error analysis of(3.5) requires the redefinition of the iteration error 
vectors eW. We shall illustrate this for the case where the function j*(n) is constant for all n. So, 
suppose that the application of the dynamic PIRKAS GS method has led to j* (tn) = j*, j* being 
a constant integer greater than 1. Then, in the (n, j) plane, the set of iterates corresponding to the 
points 

(l,i + (n - l)j* + 1),(2,i + (n- 2)j* + 1), ... ,(n -2,i + 2j* + 1),(n -1,i + j* +l),(n,i +1) 
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Fig. 2. Iteration index i in the case j* = 2. 

can be computed from the set of iterates corresponding to the points 

8 

7 

6 

5 

4 

3 

2 

n 

(1, i + (n - l)j*), (2, i + (n - 2)j*), ... , (n - 2, i + 2j*), (n - 1, i + j*), (n, i). 

Here, i is a new iteration index assuming values i = 1, 2, .... In Fig. 2, these sets of points are 
indicated by their index i for the case j* = 2. 

Let the iteration errors corresponding to the sets of iterates be denoted by 'l(iJ and qCi+ 1 >, 
respectively. Then, it is easily verified that 17<i> satisfies (2.9) with j and N replaced by i and n. Hence, 
with a few obvious changes, all results of Section 2 apply to (3.5), so that the convergence behaviour 
of the iteration errors e(il can be derived from that of the iteration errors t/<il. We shall refrain from 
a more detailed analysis, because, as already observed in Section 3.2, the sequential costs are 
essentially determined by L::n j*(tn), rather than by the number of iterations m(tn). 

3.4. Stepsize control 

In order to compare the PIRKAS GS method with results reported in the literature, we provide 
the method with a simple stepsize control strategy (without step rejection). A future paper will be 
devoted to more sophisticated stepsize control mechanisms. 

An initial guess for the integration step hn := tn - tn - 1 can be computed by means of the 
standard formula (see, e.g., [9]) 

IF n = 1 THEN h1 = 11 J~~ll i ELSE hn = hn-t min{2,max{~,0.9 (~~~ Yf<s+ 1J} }• (3.6a) 

where 

(3.6b) 
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is used as an estimate for the local truncation error 'tn- l· Since the predictor result is of orders, this 
estimate is of orders, as well. In order to achieve a smooth variation of the stepsizes as a function of 
n, we compute a second approximation to the new integration step by applying the averaging 
formula 

Finally, the step hn is rounded to hn such that the remaining integration interval is an integer 
multiple of hn. 

Notice that this stepsize strategy is rather conservative; this is due to the fact that the local 
truncation error is based on the difference between the prediction ¥~01 1 (obtained by extrapolation 
from Y~:> 2 ) and ¥~11 i. the result after just one correction. This conservative error estimation is 
a direct consequence of the "across the steps" approach where the algorithm tries to proceed to the 
next step without waiting for convergence of the preceding iterate. Usually, conservative error 
estimates grossly overestimate the real local truncation error, resulting in rather small steps in 
relation to the value of TOL As a result, this strategy tends to yield global errors that are several 
orders of magnitude smaller than the value of TOL. However, this is only a matter of scaling and of 
less practical importance. TOL still plays the role of a control parameter with the property that 
decreasing TOL yields a more accurate result. 

4. Numerical experiments 

The PIRKAS GS method { (3.1), (3.5)} described above contains as input parameters the number 
P ofiterates that are concurrently corrected, the tolerance parameters TOLcorr (for the correction at 
t 11 -p) and TOLpred (for the corrections at the remaining P - 1 points), and the tolerance parameter 
TOL for the stepsize. With respect to the parameter TOLcorr we remark that it has been 
given a small value to ascertain that the corrector was more or less solved. In most experiments, 
the value 10- 10 is sufficiently small; in a few situations (i.e., when the corrector is able to 
produce a global error less than 10- 10, we change to TOLcorr = 10- 12 in order not to be hampered 
by a too crude convergence tolerance). It may happen that the most left iterate of the 
block of iterates that are concurrently corrected, already satisfies the condition (3.4a) while (3.4b) 
is not yet satisfied. In such a situation, we do not need the corresponding processor anymore. 
Thus, the number of processors that is actually needed may change during the integration 
process. However, for the performance of the method it is not relevant whether we continue 
iterating or not. 

In this section, we present a few examples illustrating the effect of the parameters P, TOLprcd and 
TOL on the efficiency of the PIRKAS GS method. The calculations are performed using 15-digits 
arithmetic. The accuracy is given by the number of correct digits .£\., obtained by writing the 
maximum norm of the absolute error at the endpoint in the form 10-A. We recall that the 
sequential computational complexity can be measured by Nscq• the total number of sequential 
right-hand side evaluations performed in the integration process. Furthermore, we define the 
average number of iterations and the average number of sequential iterations per step by 
m"' := N- 1I.nm(t11) and m:eq := N- 1 Nscq· 



P.J. van der Houwen et a/./Journal of Computational and Applied Mathematics 60 (1995) 309-329 325 

4.1. Test problems 

Widely used problems for testing nonstiff solvers are the Euler problem JACB from [9, p. 236] 

yi(O) = 0, 

Y2(0) = 1, 

Y3 = - 0.51Y1Y2. y3(0) = 1, 

the Fehlberg problem (cf. [9, p. 174]) 

0::::; t:::;; 60, 

y'1 = 2tYi log(max{y2 , 10- 3 }), y 1 (0) = 1, 

y2 = - 2ty2log(max{Yi,10- 3 } ), y2 (0) =e. 

and the Lagrange problem LAGR (cf. [9, p. 237]) 

Y}=Yj+lO• j= 1,2, ... ,10, 

0::::; t::::; 5, 

Y}+ 10 = (j - l)Yj- 1 - (2j - l)yj + jyi+ 1 , j = 2, 3, ... , 9; 

Y2o = 9y9 - 19Y10. 

y1{0) = 0 for j =ft 8, Ys(O) = 1. 

4.2. Convergence behaviour 

(4.1) 

(4.2) 

0 ::::; t ::::; 10, (4.3) 

Since the major aim of the PIRKAS GS approach is to reduce the number of sequential 
iterations needed to solve the corrector, we will first present some results to illustrate the 
convergence behaviour. For that purpose we use the Euler problem (4.1) and we will consider the 
influence on the convergence when the input parameters are varied. The parameter TOL, which 
controls the local truncation error, is the familiar tolerance parameter occurring in any ODE code 
by which the accuracy of the numerical solution is controlled (see Section 3.4). Results for several 
values of TOL will be given in Table 7. However, choosing suitable values for the tolerance 
parameter TOLpred and the number of processor units P is less evident. For the 4-point BK 
corrector, their influence is shown in Table 6. From this table we conclude that the role 
ofTOLpred is not very critical as long as P:::;; 8. This behaviour can be explained by the fact that for 
small P, (3.4a) will usually be a more severe condition than (3.4b). Hence (3.4a) will force the 
algorithm to make several corrections to let the left point from the block that is concurrently 
iterated satisfy the corrector. As a consequence, the quality of all other points involved (in 
particular the right one which will be used to create a prediction) will be improved as well. Hence 
(3.4b) is then easily satisfied, even for smaller values of TOLpred· For large P-values however, 
an iterate corresponding to a particular time level has been part of many blocks and hence 
many corrections have been performed at this time point. Therefore, the test (3.4a) is easily passed. 
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Table 6 
{EXP, 4-point BK} and {EXP, 4-point Radau IIA} PC pair applied to the Euler problem (4.1) with TOL = 10 · 2 

{EXP, 4-point BK} PC pair {EXP, 4-point Radau UA} PC pair 

p TOLpred .d N Nseq m~q m* .:1 N Nseq m:eq m* 

10-1 7.4 152 1080 7.1 7.1 6.0 187 1326 7.1 7.1 
10-2 7.4 152 1080 7.1 7.1 6.0 187 1326 7.1 7.1 

2 10-1 7.4 152 551 3.6 6.2 6.0 187 672 3.6 6.1 
10-2 7.4 152 551 3.6 6.2 6.0 187 672 3.6 6.1 

4 10-1 7.4 153 365 2.4 8.2 6.1 189 422 2.2 7.7 
10-2 7.4 153 365 2.4 8.2 6.1 189 422 2.2 7.7 

8 10-1 7.5 155 302 1.9 13.5 6.1 190 340 1.8 12.5 
10-2 7.5 155 302 1.9 13.5 6.1 190 340 1.8 12.5 

16 10-1 8.3 233 381 1.6 22.2 6.6 266 414 1.6 21.6 
10-2 8.0 179 327 1.8 21.2 6.4 207 356 1.7 20.9 
10-3 7.4 152 301 2.0 15.7 6.0 185 367 2.0 9.2 
10-4 7.4 152 414 2.7 6.6 6.0 187 537 2.9 6.1 

32 10-1 8.2 198 347 1.8 24.6 6.5 223 373 1.7 24.2 
10-2 8.0 180 329 1.8 21.4 6.3 203 354 1.7 21.8 
io- 3 7.4 152 301 2.0 15.7 6.0 185 367 2.0 9.2 
10-4 7.4 152 414 2.7 6.6 6.0 187 537 2.9 6.1 

To guarantee that the "front" of the block is also of sufficient quality, we need a more stringent 
value for TOLpred· From the table it is clear that crude values for this parameter result in larger 
truncation errors and hence an increased number of time steps. In general, we conclude that 
increasing P leads to an enhanced performance. 

In order to see the effect of the corrector formula (2.1) on the averaged number of iterations m*, 
we also listed results for the {EXP, 4-point Radau IIA} PC pair. Evidently, the BK corrector 
produces higher accuracies and requires less sequential function calls. Furthermore, the averaged 
number of iterations per step point is comparable, except for the case where a larger number of 
processor units is combined with a smaller value of TOLpred (in the limit, the averaged number of 
iterations m* approaches that of the PIRK method corresponding to P = 1). This difference can be 
explained by the particular step advance strategy used causing j*(tn) to change discontinuously. 

Confining our considerations to BK correctors, we will now test the influence of the number of 
stages s and the parameter TOL. Table 7 shows results for s == 2 and s = 4. In these tests we set 
P = 4 and TOLpred = 10- 1. This table gives rise to the conclusion that the number of sequential 
calls per step is quite modest (much lower than for the PIRK method), and moreover decreases 
when we move to the high accuracy range. This tendency was also observed for the other problems. 

4.3. Comparison with DOPR/8 

Next, we will make a comparison with the code DOPRI8 (given in [9]); this code is based on the 
embedded RK method in [18] of order 8(7). DOPRI8 is nowadays considered as the state of the art 
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Table 7 
{EXP, s-point BK} PC pairs with P = 4 applied to the Euler 
problem (4.l) with TOLprod = 10- 1 

s TOL LI N Nseq m:.q m* 

2 10-1 2.4 121 370 3.1 10.8 
10-2 3.6 263 539 2.0 7.1 
10-3 4.8 566 910 1.6 5.3 
10-4 6.0 1234 1633 L3 4.2 

4 4.4 58 234 4.0 13.6 
10-1 5.9 95 290 3.1 10.7 
10-2 7.4 153 365 2.4 8.2 
10- 3 9.6 245 462 1.9 6.3 

Table 8 
Values of N,.q for DOPRI8 and speed-up factors for PIRKAS GS methods (with various numbers of processor units) 
for the Euler problem (4.1) 

Code Order p LI= 4 Ll=5 LI= 6 A= 7 .LI =8 A=9 A= 10 

DOPRl8 8 1083 1361 1864 2366 3038 3600 4526 

PIRKAS GS 8 4 5.0 5.3 6.3 6.9 7.8 8.3 9.4 
8 5.0 5.9 7.4 8.3 8.9 8.6 8.9 

16 4.8 5.7 7.3 8.3 8.4 8.8 10.1 

PIRKAS GS 10 4 6.7 8.2 9.3 10.4 10.7 11.4 
8 6.3 8.5 10.2 11.9 12.9 14.9 

16 8.l 10.0 11.8 12.5 14.2 

for integrating nonstiff problems on a sequential computer. For a wide range of TOL-values, 
we applied DOPRI8 to the three test problems. In Tables 8-10 we present, for a number 
of integer ~-values, the corresponding Nseq-values, obtained by interpolation. For the same 
~-values, we caJculate the values of Nseq needed by the PIRKAS GS method and we list 
the speed-up factors with respect to DOPRI8 (defined as the quotient of the respective values 
of Nseq). 

From these tables we see that the speed-up factors increase if we enter the high-accuracy region 
(for the PIRKAS GS method of order 10 this is of course also caused by the higher order). 
Furthermore, with respect to the number P, we conclude that its optimal value seems to be in the 
range [8, 16]. Of course, the optimal value may differ with the problem solved and also depends on 
the parameter TOLprcd· If TOLpred is chosen too large for the problem at hand, then the optimal 
value of P should be sufficiently small in order to prevent that condition (3.4a) is satisfied prior to 
(3.4b). 
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Table 9 
Values of N,.q for DOPRI8 and speed-up factors for PJRKAS GS methods (with various numbers of processor units) for 
the Fehlberg problem (4.2) 

Code Order p LI= 5 LI= 6 A= 7 LI= 8 LI= 9 A= 10 A= 11 

DOPRI8 8 658 824 1025 1291 1650 2033 2570 

PIRKASGS 8 4 5.6 5.7 6.0 6.5 7.0 6.9 7.3 
8 6.0 6.5 7.3 8.1 9.0 8.7 9.0 

16 5.6 6.1 6.8 7.9 7.8 8.1 9.1 

PIRKASGS 10 4 5.9 7.0 7.7 8.4 9.4 10.4 11.8 
8 6.0 7.2 8.7 10.2 12.2 13.0 14.6 

16 5.5 6.8 8.1 9.2 10.6 11.7 13.0 

Table 10 
Values of N,.q for DOPRl8 and speed-up factors for PIRKAS GS methods (with various numbers of 
processor units) for the Lagrange problem (4.3) 

Code Order p A= 5 J =6 J = 7 A== 8 J =9 .1=10 

DOPRIS 8 668 841 1161 1498 1812 2319 

PIRKAS GS 8 4 3.3 3.7 4.7 5.2 5.2 5.4 
8 3.3 3.8 4.7 5.4 5.8 6.4 

16 4.5 4.9 5.2 4.9 5.0 

PIRKAS GS 10 4 5.8 6.7 7.4 8.6 
8 5.6 6.9 7.6 9.1 

16 6.7 7.3 8.6 
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