16 research outputs found

    A unique immune signature in blood separates therapy-refractory from therapy-responsive acute graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b+CD163+ myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCRγδ+ cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3+ T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasmablasts, and 2 distinct CD11b– dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.</p

    In Situ Detection of HY-Specific T Cells in Acute Graft-versus-Host Disease–Affected Male Skin after Sex-Mismatched Stem Cell Transplantation

    Get PDF
    HY-specific T cells are presumed to play a role in acute graft-versus-host disease (aGVHD) after female-to-male stem cell transplantation (SCT). However, infiltrates of these T cells in aGVHD-affected tissues have not yet been reported. We evaluated the application of HLA-A2/HY dextramers for the in situ detection of HY-specific T cells in cryopreserved skin biopsy specimens. We applied the HLA-A2/HY dextramers on cryopreserved skin biopsy specimens from seven male HLA-A2+ pediatric patients who underwent stem cell transplantation with confirmed aGVHD involving the skin. The dextramers demonstrated the presence of HY-specific T cells. In skin biopsy specimens of three male recipients of female grafts, 68% to 78% of all skin-infiltrating CD8+ T cells were HY-specific, whereas these cells were absent in biopsy specimens collected from sex-matched patient–donor pairs. Although this study involved a small and heterogeneous patient group, our results strongly support the hypothesis that HY-specific T cells are actively involved in the pathophysiology of aGVHD after sex-mismatched stem cell transplantation

    Anti-T-lymphocyte globulin exposure is associated with acute graft-versus-host disease and relapse in pediatric acute lymphoblastic leukemia patients undergoing hematopoietic stem cell transplantation: a multinational prospective study

    Get PDF
    Anti T-lymphocyte globulin (ATLG) is used in hematopoietic stem cell transplantation (HSCT) to prevent graft-versus-host disease (GvHD) and graft failure. To date, insight in ATLG pharmacokinetics and -dynamics (PK/PD) is limited, and population PK (POPPK) models are lacking. In this prospective study, we describe ATLG POPPK using NONMEM® and the impact of ATLG exposure on clinical outcome and immune reconstitution in a homogeneous cohort of pediatric acute lymphoblastic leukemia (ALL) patients transplanted with a matched unrelated donor and receiving uniform ATLG dosing. Based on 121 patients and 812 samples for POPPK analysis, a two-compartmental model with parallel linear and non-linear clearance and bodyweight as covariate, best described the ATLG concentrationtime data. The level of ATLG exposure (day active ATLG day 16 8.2%,

    Preparation of cytokine-activated NK cells for use in adoptive cell therapy in cancer patients: Protocol optimization and therapeutic potential

    No full text
    Cell-based immunotherapy using donor-derived natural killer (NK) cells after allogeneic hematopoietic stem cell transplantation may be an attractive treatment of residual leukemia. This study aimed to optimize clinical grade production of a cytokine- activated NK-cell product. NK cells were isolated either by double depletion (CD3-, CD19-) or by sequential depletion and enrichment (CD3-, CD56+) via CliniMACS from leukapheresis material and cultured in vitro with interleukin (IL)-2 or IL-15. Both NK cell isolation procedures yielded comparable recovery of NK cells and levels of T-cell contamination. After culture with cytokines, the CD3-CD56+ procedure resulted in NK cells of higher purity, that is, less T cells and monocytes, higher viability, and a slightly higher yield than the CD3-CD19- procedure. CD69, NKp44, and NKG2A expression were higher on CD3-CD56+ products, whereas lysis of Daudi cells was comparable. Five days of culture led to higher expression of CD69, NKp44, and NKp30 and lysis of K562 and Daudi cell lines. Although CD69 expression and lysis of Daudi cells were slightly higher in cultures with IL-2, T-cell contamination was lower with IL-15. Therefore, further experiments were performed with CD3-CD56+ products cultured with IL-15. Cryopreservation of IL-15-activated NK cells resulted in a loss of cytotoxicity (>92%), whereas thawing of isolated, uncultured NK cells followed by culture with IL-15 yielded cells with about 43% of the original lytic activity. Five-day IL-15-activated NK cells lysed tumor target cell lines and primary leukemic blasts, providing the basis for NK cell-based immunotherapeutic strategies in a clinical setting

    Mutations in ZBTB24 Are Associated with Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome Type 2

    Get PDF
    Autosomal-recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is mainly characterized by recurrent, often fatal, respiratory and gastrointestinal infections. About 50% of patients carry mutations in the DNA methyltransferase 3B gene (DNMT3B) (ICF1). The remaining patients carry unknown genetic defects (ICF2) but share with ICF1 patients the same immunological and epigenetic features, including hypomethylation of juxtacentromeric repeat sequences. We performed homozygosity mapping in five unrelated ICF2 patients with consanguineous parents and then performed whole-exome sequencing in one of these patients and Sanger sequencing in all to identify mutations in the zinc-finger- and BTB (bric-a-bric, tramtrack, broad complex)-domain-containing 24 (ZBTB24) gene in four consanguineously descended ICF2 patients. Additionally, we found ZBTB24 mutations in an affected sibling pair and in one patient for whom it was not known whether his parents were consanguineous. ZBTB24 belongs to a large family of transcriptional repressors that include members, such as BCL6 and PATZ1, with prominent regulatory roles in hematopoietic development and malignancy. These data thus indicate that ZBTB24 is involved in DNA methylation of juxtacentromeric DNA and in B cell development and/or B and T cell interactions. Because ZBTB24 is a putative DNA-binding protein highly expressed in the lymphoid lineage, we predict that by studying the molecular function of ZBTB24, we will improve our understanding of the molecular pathophysiology of ICF syndrome and of lymphocyte biology in general
    corecore