16,971 research outputs found

    On Minimal Triangle-Free 5-Chromatic Graphs

    Get PDF

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    Information criteria for efficient quantum state estimation

    Full text link
    Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state. We add one more method in that same spirit: we allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned cases, but is based on well-established statistical methods that go under the name of "information criteria." We exploit here, in particular, the Akaike Information Criterion (AIC). We illustrate the method by simulating experiments on (noisy) Dicke states

    Comprehensive web-based broker for bio-technology design and manufacturing

    Get PDF
    Synthetic biology, particularly in relation to characterisation experiments relating to the description of bio-parts frequently involves the use of a wide range of equipment, including, for example, plate reader's, flow cytometers, and mass spectrometers. This equipment is often from multiple manufacturers. The study describes broker technology that has been developed which has the ability to connect multiple types of equipment into a common information environment; the connectivity from the databases and equipment is achieved using Visbion's ‘cube’ technology that involves military specification encryption for data security. The broker technology uses a new, developing standard, Digital Imaging and Communication in Medicine (DICOM)-SB, that is based on the highly successful international standard for biomedicine, DICOM. The broker uses a version of the DICOM data model that has been specifically designed for synthetic biology and, in particular, characterisation data

    Numerical simulations of the Accretion-Ejection Instability in magnetised accretion disks

    Get PDF
    The Accretion-Ejection Instability (AEI) described by Tagger & Pellat (1999) is explored numerically using a global 2d model of the inner region of a magnetised accretion disk. The disk is initially currentless but threaded by a vertical magnetic field created by external currents, and frozen in the flow. In agreement with the theory a spiral instability, similar in many ways to those observed in self-gravitating disks, develops when the magnetic field is, within a factor of a few, at equipartition with the disk thermal pressure. Perturbations in the flow build up currents and create a perturbed magnetic field within the disk. The present non-linear simulations give good evidence that such an instability can occur in the inner region of accretion disks, and generate accretion of gas and vertical magnetic flux toward the central object, if the equilibrium radial profiles of density and magnetic flux exceed a critical threshold.Comment: single tar file with GIF figure

    Multi-Channel Transport in Disordered Medium under Generic Scattering Conditions

    Full text link
    Our study of the evolution of transmission eigenvalues, due to changes in various physical parameters in a disordered region of arbitrary dimensions, results in a generalization of the celebrated DMPK equation. The evolution is shown to be governed by a single complexity parameter which implies a deep level of universality of transport phenomena through a wide range of disordered regions. We also find that the interaction among eigenvalues is of many body type that has important consequences for the statistical behavior of transport properties.Comment: 19 Pages, No Figure

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system
    corecore