Swarthmore College
Works

10-1989

On Minimal Triangle-Free 5-Chromatic Graphs

Charles M. Grinstead
Swarthmore College, cgrinst1@swarthmore.edu
Matthew H. Katinsky , '87
David William Van Stone , '88

Follow this and additional works at: https://works.swarthmore.edu/fac-math-stat
Part of the Mathematics Commons
Let us know how access to these works benefits you

Recommended Citation

Charles M. Grinstead; Matthew H. Katinsky , '87; and David William Van Stone, '88. (1989). "On Minimal Triangle-Free 5-Chromatic Graphs". Journal Of Combinatorial Mathematics And Combinatorial Computing. Volume 6, 189-193.
https://works.swarthmore.edu/fac-math-stat/138

This work is brought to you for free and open access by . It has been accepted for inclusion in Mathematics \& Statistics Faculty Works by an authorized administrator of Works. For more information, please contact myworks@swarthmore.edu.

ON MINIMAL TRIANGLE-FREE 5-CHROMATIC GRAPHS

Charles M. Grinstead, Matthew Katinsky and David Van Stone

Department of Mathematics
Swarthmore College
Swarthmore, PA 19081
U.S.A.

Abstract

Avis has shown that the number of vertices of a minimal triangle-free 5chromatic graph is no fewer than 19. Mycielski has shown that this number is no more than 23. In this paper, we improve these bounds to 21 and 22 , respectively.

Let $f(k)$ denote the number of vertices in the smallest k-chromatic triangle-free graph. Chvatal [2] has demonstrated that

$$
\begin{equation*}
\mathrm{f}(\mathrm{k}) \geq\binom{ k+2}{2}-4, \quad \text { for } k \geq 4 \tag{1}
\end{equation*}
$$

Mycielski [5] has constructed a sequence of graphs which demonstrates that

$$
\begin{equation*}
\mathrm{f}(\mathrm{k}) \leq 2^{k}-2^{k-2}-1, \quad k=2,3,4, \ldots \tag{2}
\end{equation*}
$$

and Erdös [3] has shown that

$$
\begin{equation*}
\mathrm{f}(\mathrm{k})<\mathrm{c}(\mathrm{k} \cdot \log k)^{2} \tag{3}
\end{equation*}
$$

In addition, Erdös [4] has constructed a sequence of graphs, G_{n}, which are trianglefree and for which $\alpha\left(G_{n}\right)<\left|G_{n}\right|^{\beta}$, for some $\beta<1$. Let $\alpha(G)$ be the size of the largest maximum independent subset of a graph G. Since for any graph G, $\chi(G) \geq|G| / \alpha(G)$, we have $\chi\left(G_{n}\right) \geq\left|G_{n}\right| /\left|G_{n}\right|^{\beta}=\left|G_{n}\right|^{1-\beta}$. Thus, if we let $k=\left|G_{n}\right|^{1-\beta}$, the sequence G_{n} demonstrates constructively that

$$
\begin{equation*}
f(k) \leq k^{1 /(1-\beta)} \tag{4}
\end{equation*}
$$

It is easy to check that $f(2)=2$ and $f(3)=5$. These values, together with (1), show that Mycielski's construction gives the smallest triangle-free k-chromatic graphs for $k=2,3$, and 4 .

We are interested in the value of $f(5)$. Avis [1] has shown that $f(5) \geq 19$, and Mycielski's construction gives $f(5) \leq 23$. Using a computer algorithm, we have shown that $21 \leq f(5) \leq 22$.

Following Avis' proof, we will show that it is impossible to construct any edgemaximal, vertex-minimal, triangle-free, 5-chromatic graphs with 19 or 20 vertices.

[^0]Let \mathcal{G} be the collection of all such graphs, and let $G \in \mathcal{G}$. Let H_{1} be an independent subset of G of size $\alpha(G)$, and let H_{2} be the induced subgraph of G formed from the vertices of G that are not in H_{1}. If H_{2} were 3-colorable, then we could color all the vertices in H_{1} with the same fourth color and G would be 4 -colorable, which it is not. Therefore H_{2} must be 4-chromatic. Since H_{2} is also triangle-free, it must have at least 11 vertices, since the Mycielski graph on 11 vertices is the smallest such graph. Since the Ramsey number $R(3,6)$ equals 18 , any graph with 18 or more vertices either contains a triangle or an independent set of size at least 6 , so H_{1} must have at least 6 vertices and H_{2} can have no more than 14 vertices. Thus, we know that H_{2} must be a triangle-free, 4-chromatic graph with between 11 and 14 vertices.

For each vertex v_{i} in H_{1}, define S_{i} to be the set of neighbors of v_{i} in H_{2}. To construct all graphs in \mathcal{G}, one could look at every possible collection of subsets of every possible H_{2} and construct a graph by adding vertices whose neighborhoods are the subsets. Then one could check whether the resulting graph has the desired properties. However, the number of 14 -vertex triangle-free 4 -chromatic graphs is too large for this method to be feasible. We will show that only some of these graphs need to be used. Also, we need not examine every collection of subsets.

If H_{2} has 14 vertices then G has 20 vertices and $\alpha(G)=6$. We break this into smaller cases depending on $\Delta(G)$, the largest degree in G. Brooks' theorem says that $\Delta(G) \geq \chi(G)$, and we know that $\Delta(G) \leq \alpha(G)$ since a neighborhood of a vertex is an independent set in a triangle-free graph. Therefore, $\Delta(G)$ is either 5 or 6 .

If $\Delta(G)=6$, we can choose H_{1} to be the set of neighbors of a vertex of degree 6. This vertex is an element of H_{2}, but it has no neighbors in H_{2}, so without it, H_{2} is still 4-chromatic. Thus, H_{2} is the disjoint union of a 13-vertex, triangle-free, 4chromatic graph and a vertex. Furthermore, since H_{1} is a maximum independent set, each vertex in H_{2} must be adjacent to a vertex in H_{1}, so $\Delta\left(H_{2}\right)<\Delta(G)=6$.

If $\Delta(G)=5$, we can choose a vertex in H_{2} that is adjacent to the most vertices in H_{1} (this vertex is not necessarily unique). Let x be that vertex and let β be the number of vertices to which x is adjacent in H_{1}. Since $\Delta(G)$ is $4, \beta \leq 5$. Since G is edge-maximal, every pair of vertices of G either is adjacent or shares a neighbor. Since no two vertices in H_{1} are adjacent, each pair shares a neighbor. If $\beta=2$, then no vertex in H_{2} is adjacent to more than 2 vertices in H_{1}. However, there are 15 pairs of vertices in H_{1} and only 13 vertices in H_{2}. Therefore, $\beta>2$. Consequently, x is adjacent to 2 or fewer vertices in H_{2}, which means that without x, H_{2} is still 4-chromatic. So H_{2} can be constructed from a 13-vertex triangle-free 4 -chromatic graph by adding a vertex and 1 or 2 edges from that vertex (the case involving no additional edges is covered in the $\Delta(G)=6$ case). Also $\Delta\left(H_{2}\right)<$ $\Delta(G)=5$.

Let \mathcal{H} be the collection of all 11-, 12-, and 13-vertex triangle-free 4-chromatic graphs, together with all graphs satisfying the conditions on H_{2} in the preceding
cases. We now describe how the graphs in \mathcal{H} can be generated by computer. Since the 14 -vertex graphs in \mathcal{H} arise from the 13 -vertex graphs in \mathcal{H} as described above, we need only explain how the $11-, 12$-, and 13 -vertex graphs in \mathcal{H} are obtained. Let H_{2} be such a graph. Then $\alpha\left(H_{2}\right) \geq 4$, since $R(3,4)=9$. Furthermore, if T is a maximum independent set of H_{2}, then $H_{2}-T$ is 3 -chromatic, with at most 9 vertices. Thus, to find all such graphs H_{2}, it is enough to create a list of all 3-chromatic, triangle-free graphs with at most 4 vertices. For each graph U in this list, add an independent set T with at least 4 vertices, and add edges in all possible ways between T and U.

We now give some definitions which are used in the theorem which follows. Given a graph H_{2}, let $C_{1}, C_{2}, \ldots, C_{m}$ be the set of all 4-colorings of H_{2}. A subset S of H_{2} color-dominates a coloring C_{j} if and only if S is colored with 4 colors in the coloring C_{j}. A collection of subsets $B=S_{1}, S_{2}, \ldots, S_{k}$ color-dominates a collection of colorings $C=C_{1}, C_{2}, \ldots, C_{\tau}$ if and only if for every coloring in C there exists a set in B that color-dominates that coloring. A collection B of subsets of H_{2} is called a color-dominating set if the collection color-dominates all 4-colorings of H_{2}.

Given a graph H_{2} and a collection $B=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of H_{2}, the graph generated by these objects is the graph whose vertex set is the set of vertices in H_{2} together with a vertex v_{i} for $i=1,2, \ldots, m$ and whose edge set is the set of edges in H_{2} together with edges from v_{i} to each vertex in S_{i}, for $i=1,2, \ldots, n$

Theorem. If H_{2} is a triangle-free, 4-chromatic graph, and $B=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a collection of subsets of H_{2}, then the graph G generated by H_{2} and B is 5chromatic if and only if B color-dominates every 4-coloring of H_{2}.

Proof: If the set B does not color-dominate all 4-colorings of H_{2}, then there is some coloring C of H_{2} which is color-dominated by no subset $S_{\mathfrak{i}}$. Under that coloring of H_{2}, each S_{i} is colored with 3 or fewer colors, so it is possible to color each v_{i} in H_{1} with a color not found in S_{i}, thereby 4 -coloring G. Therefore, if G is 5-chromatic, the set B must necessarily color-dominate all 4-colorings of H_{2}.

Let us now assume that G is 4-colorable. Any 4-coloring of G gives a 4-coloring of H_{2}. If B color-dominates every 4 -coloring of H_{2}, then all 4 colors appear in some S_{i} in B. Then v_{i} is colored the same as one of its neighbors. This contradiction shows that G is 5 -chromatic.

This theorem gives rise to an algorithm, described below, which produces all graphs in \mathcal{G}. For each $H_{2} \in \mathcal{H}$, we want to find a certain dominating collection of subsets of H_{2} from which we can construct G. Any such subset S of H_{2} in this collection must satisfy the following criteria:

1) S is an independent set of H_{2}. Since G is triangle-free, no two vertices of S can be adjacent, for otherwise they would form a triangle with a vertex in H_{1}.
2) S is a maximal independent set in H_{2}. Since G is edge-maximal, every two vertices are either adjacent or share a neighbor. Thus, for each i, a vertex w in H_{2} is either adjacent to v_{i} (that is, w is an element of S_{i}), or shares a neighbor with v_{i} (that is, w is adjacent to some vertex in S_{i}). Therefore, if w is not adjacent to any vertex in a particular subset S, it is an element of that S.
3) S has at least 4 vertices. Otherwise, S dominates no 4 -coloring of H_{2}.

We create a list of all subsets of H_{2} that satisfy these criteria and a list of all 4-colorings of H_{2}. We then perform a standard backtrack to find the smallest collection of subsets that dominates every coloring.

When this backtrack algorithm was performed on each graph in \mathcal{H}, no 19- or 20 -vertex solutions were generated. Since the above theorem shows that all 19 and 20 -vertex graphs will be found by this algorithm, it must be the case that there are no such graphs. Thus, $f(5) \geq 21$.

It is possible to let the algorithm run deeper into the backtrack tree, thereby generating 5 -chromatic, triangle-free graphs with more than 20 vertices. Upon doing this, we found a few 22 -vertex graphs with these properties, one of which is given below. While it can easily be checked by computer that this graph has the required properties, to show that it is 5 -chromatic by hand seems to be difficult. This shows that $f(5) \leq 22$. To determine whether $f(5)=21$ or $f(5)=22$, one must search for 21 -vertex graphs with the required properties. The above algorithm will work, but the collection \mathcal{H} must be greatly expanded, thus requiring an enormous amount of computer time.

A 22-vertex triangle-free 5 -chromatic graph

Vertex	Neighbors								
1	2	5	9	10	17	19	20	22	
2	1	3	11	12	14	15			
3	2	4	8	9	18	19	21	22	
4	3	5	10	11	14	17	20		
5	1	4	8	12	15	18	21		
6	11	12	14	15	17	18	19		
7	8	9	10	11	12	17	18	19	
8	3	5	7	14	16	20			
9	1	3	7	14	15	16			
10	1	4	7	15	16	21			
11	2	4	6	7	16	21	22		
12	2	5	6	7	16	20	22		
13	14	15	16	17	18	19	20	21	22
14	2	4	6	8	9	13			
15	2	5	6	9	10	13			
16	8	9	10	11	12	13			
17	1	4	6	7	13				
18	3	5	6	7	13				
19	1	3	6	7	13				
20	1	4	8	12	13				
21	3	5	10	11	13				
22	1	3	11	12	13				

References

1. D. Avis, On minimal 5-chromatic triangle-free graphs, J. of Graph Theory 3 (1979), 397-400.
2. V. Chvatal, The minimality of the Mycielski graph, Lecture Notes in Mathematics 406, Graphs and Combinatorics (1973), 243-246, Springer-Verlag, Berlin.
3. P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959), 34-38.
4. P. Erdös, Remarks on a theorem of Ramsey, Bull. Res. Council Israel 7 (1957), 21-24.
5. J. Mycielski, Sur le coloriage des graphes, Coll. Math. 3 (1955), 161-162.

[^0]: All three authors were partially supponed by NSF grant number DMS-8401281, a Dana Foundation grant, and a GTE grant.

