297 research outputs found
The relationship between response consistency in picture naming and storage impairment in people with semantic variant Primary Progressive Aphasia
This is the author accepted manuscript. The final version is available from the American Psychological Association via the DOI in this record.Objective. The progressive loss of stored knowledge about word meanings in semantic
variant Primary Progressive Aphasia (svPPA) has been attributed to an amodal
“storage” deficit of the semantic system. Performance consistency has been proposed to
be a key characteristic of storage deficits but has not been examined in close detail and
larger participant cohorts. Methods: We assessed whether 10 people with svPPA
showed consistency in picture naming across three closely consecutive sessions. We
examined item-by-item consistency of naming accuracy and specific error types, while
controlling for the effects of variables such as word frequency, familiarity and age of
acquisition. Results: Participants were very consistent in their accurate and inaccurate
responses over and above any effects of the word-related variables. Analyses of error
types that compared consistency of semantic errors, correct responses and other error
types (e.g., phonologically related errors, unrelated errors) revealed lower consistency.
Conclusions: Our findings support the assumption that semantic features constituting
semantic representations of objects are progressively lost in people with svPPA and are
therefore consistently unavailable during naming. Variability in the production of error
types remains when distinctive features of an object are lost resulting in the selection of
semantically or visually similar items, or in the failure to select an item and the
production of a no-response. The assessment of performance consistency sheds light on
the underlying impairment of people with semantic deficits (semantic storage versus
access deficit). This can support the choice of an appropriate treatment technique
aiming to maintain, or re-learn semantic information
Web-based language production experiments: Semantic interference assessment is robust for spoken and typed response modalities
For experimental research on language production, temporal precision and high quality of the recorded audio files are imperative. These requirements are a considerable challenge if language production is to be investigated online. However, online research has huge potential in terms of efficiency, ecological validity and diversity of study populations in psycholinguistic and related research, also beyond the current situation. Here, we supply confirmatory evidence that language production can be investigated online and that reaction time (RT) distributions and error rates are similar in written naming responses (using the keyboard) and typical overt spoken responses. To assess semantic interference effects in both modalities, we performed two pre-registered experiments (n = 30 each) in online settings using the participants' web browsers. A cumulative semantic interference (CSI) paradigm was employed that required naming several exemplars of semantic categories within a seemingly unrelated sequence of objects. RT is expected to increase linearly for each additional exemplar of a category. In Experiment 1, CSI effects in naming times described in lab-based studies were replicated. In Experiment 2, the responses were typed on participants' computer keyboards, and the first correct key press was used for RT analysis. This novel response assessment yielded a qualitatively similar, very robust CSI effect. Besides technical ease of application, collecting typewritten responses and automatic data preprocessing substantially reduce the work load for language production research. Results of both experiments open new perspectives for research on RT effects in language experiments across a wide range of contexts. JavaScript- and R-based implementations for data collection and processing are available for download
Two kinds of pink: development and difference in Germanic colour semantics
Max Planck Gesellschaft
Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017
PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. To date, very high-energy (VHE, > 100 GeV) emission has been observed from this source either during long high states of optical and GeV activity or during short flares. Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We characterize and model the source in a broadband context, which would provide a baseline over which high states and flares could be better understood. Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray, and gamma-ray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modeled within an external Compton scenario with a stationary emission region through which plasma and magnetic fields are flowing. We also perform the emission-model-independent calculations of the maximum absorption in the broad line region (BLR) using two different models. Results. The MAGIC telescopes collected 75 hr of data during times when the Fermi-LAT flux measured above 1 GeV was below 3? × 10 -8 ? cm -2 ? s -1 , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.5¿) VHE gamma-ray emission at the level of (4.27 ± 0.61 stat ) × 10 -12 ? cm -2 ? s -1 above 150 GeV, a factor of 80 lower than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broadband emission is compatible with the external Compton scenario assuming a large emission region located beyond the BLR. For the first time the gamma-ray data allow us to place a limit on the location of the emission region during a low gamma-ray state of a FSRQ. For the used model of the BLR, the 95% confidence level on the location of the emission region allows us to place it at a distance > 74% of the outer radius of the BLR. © ESO 2018.The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Exce-lencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382, and by the Brazilian MCTIC, CNPq and FAPERJ. IA acknowledges support from a Ramón y Cajal grant of the Ministerio de Economía, Industria, y Competitividad (MINECO) of Spain. Acquisition and reduction of the POLAMI and MAPCAT data was supported in part by MINECO through grants AYA2010-14844, AYA2013-40825-P, and AYA2016-80889-P, and by the Regional Government of Andalucía through grant P09-FQM-4784.Peer Reviewe
First detection of VHE gamma-ray emission from TXS 1515-273, study of its X-ray variability and spectral energy distribution
We report here on the first multi-wavelength (MWL) campaign on the blazar TXS
1515-273, undertaken in 2019 and extending from radio to very-high-energy gamma
rays (VHE). Up until now, this blazar had not been the subject of any detailed
MWL observations. It has a rather hard photon index at GeV energies and was
considered a candidate extreme high-synchrotronpeaked source. MAGIC
observations resulted in the first-time detection of the source in VHE with a
statistical significance of 7.6. The average integral VHE flux of the
source is 6 1% of the Crab nebula flux above 400 GeV. X-ray coverage was
provided by Swift-XRT, XMMNewton, and NuSTAR. The long continuous X-ray
observations were separated by 9 h, both showing clear hour scale
flares. In the XMM-Newton data, both the rise and decay timescales are longer
in the soft X-ray than in the hard X-ray band, indicating the presence of a
particle cooling regime. The X-ray variability timescales were used to
constrain the size of the emission region and the strength of the magnetic
field. The data allowed us to determine the synchrotron peak frequency and
classify the source as a flaring high, but not extreme, synchrotron peaked
object. Considering the constraints and variability patterns from the X-ray
data, we model the broad-band spectral energy distribution. We applied a simple
one-zone model, which could not reproduce the radio emission and the shape of
the optical emission, and a two-component leptonic model with two interacting
components, enabling us to reproduce the emission from radio to VHE band
Follow-up observations of GW170817 with the MAGIC telescopes
The discovery of the electromagnetic counterpart AT2017gfo and the GRB 170817A, associated to the binary neutron star merger GW170817, was one of the major advances in the study of gamma-ray bursts (GRBs) and the hallmark of the multi-messenger astronomy with gravitational waves. Another breakthrough in GRB physics is represented by the discovery of the highly energetic, teraelectronvolt (TeV) component in the GRB 190114C, possibly an universal component in all GRBs. This conclusion is also suggested by the hint of TeV emission in the short GRB 160821B and a few more events reported in the literature. The missing observational piece is the joint detection of TeV emission and gravitational waves from a short GRB and its progenitor. MAGIC observed the counterpart AT2017gfo as soon as the visibility conditions allowed it, namely from January to June 2018. These observations correspond to the maximum flux level observed in the radio and X-ray bands. The upper limits derived from TeV observations are compared with the modelling of the late non-thermal emission using the multi-frequency SED
Long-term multi-wavelength study of 1ES 0647+250
The BL Lac object 1ES 0647+250 is one of the few distant -ray
emitting blazars detected at very high energies (VHE, 100 GeV) during
a non-flaring state. It was detected with the MAGIC telescopes during its low
activity in the years 2009-2011, as well as during three flaring activities in
the years 2014, 2019 and 2020, with the highest VHE flux in the latter epoch.
An extensive multi-instrument data set was collected within several coordinated
observing campaigns throughout these years. We aim to characterise the
long-term multi-band flux variability of 1ES 0647+250, as well as its broadband
spectral energy distribution (SED) during four distinct activity states
selected in four different epochs, in order to constrain the physical
parameters of the blazar emission region under certain assumptions. We evaluate
the variability and correlation of the emission in the different energy bands
with the fractional variability and the Z-transformed Discrete Correlation
Function, as well as its spectral evolution in X-rays and rays. Owing
to the controversy in the redshift measurements of 1ES 0647+250 reported in the
literature, we also estimate its distance in an indirect manner through the
comparison of the GeV and TeV spectra from simultaneous observations with
Fermi-LAT and MAGIC during the strongest flaring activity detected to date.
Moreover, we interpret the SEDs from the four distinct activity states within
the framework of one-component and two-component leptonic models, proposing
specific scenarios that are able to reproduce the available multi-instrument
data.Comment: 20 pages, 7 figures. Accepted in A&A. Corresponding authors: Jorge
Otero-Santos; Daniel Morcuende; Vandad Fallah Ramazani; Daniela Dorner; David
Paneque (mailto: [email protected]
Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS
The realtime follow-up of neutrino events is a promising approach to searchfor astrophysical neutrino sources. It has so far provided compelling evidencefor a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observedin coincidence with the high-energy neutrino IceCube-170922A detected byIceCube. The detection of very-high-energy gamma rays (VHE, ) from this source helped establish the coincidence andconstrained the modeling of the blazar emission at the time of the IceCubeevent. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) -FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program oftarget-of-opportunity observations of neutrino alerts sent by IceCube. Thisprogram has two main components. One are the observations of known gamma-raysources around which a cluster of candidate neutrino events has been identifiedby IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of singlehigh-energy neutrino candidate events of potential astrophysical origin such asIceCube-170922A. GFU has been recently upgraded by IceCube in collaborationwith the IACT groups. We present here recent results from the IACT follow-upprograms of IceCube neutrino alerts and a description of the upgraded IceCubeGFU system.<br
A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations
Extended and delayed emission around distant TeV sources induced by the
effects of propagation of gamma rays through the intergalactic medium can be
used for the measurement of the intergalactic magnetic field (IGMF). We search
for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with
the goal to detect or constrain the IGMF-dependent secondary flux generated
during the propagation of TeV gamma rays through the intergalactic medium. We
analyze the most recent MAGIC observations over a 5 year time span and
complement them with historic data of the H.E.S.S. and VERITAS telescopes along
with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace
source evolution in the GeV-TeV band over one-and-a-half decade in time. We use
Monte Carlo simulations to predict the delayed secondary gamma-ray flux,
modulated by the source variability, as revealed by TeV-band observations. We
then compare these predictions for various assumed IGMF strengths to all
available measurements of the gamma-ray flux evolution. We find that the source
flux in the energy range above 200 GeV experiences variations around its
average on the 14 years time span of observations. No evidence for the flux
variability is found in 1-100 GeV energy range accessible to Fermi/LAT.
Non-detection of variability due to delayed emission from electromagnetic
cascade developing in the intergalactic medium imposes a lower bound of
B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the
cosmological origin. Though weaker than the one previously derived from the
analysis of Fermi/LAT data, this bound is more robust, being based on a
conservative intrinsic source spectrum estimate and accounting for the details
of source variability in the TeV energy band. We discuss implications of this
bound for cosmological magnetic fields which might explain the baryon asymmetry
of the Universe.Comment: 10 pages, 5 figures, accepted to A&A. Corresponding authors: Ievgen
Vovk, Paolo Da Vela (mailto:[email protected]) and Andrii Neronov
(mailto:[email protected]
MAGIC observations of the nearby short GRB 160821B
Gamma-ray bursts (GRBs), the most luminous explosions in the universe, have at least two types known. One of them, short GRBs, have been thought to originate from binary neutron star (BNS) mergers. The discovery of GW170817 together with a GRB was the first and only direct proof of the hypothesis, and thus the properties of the short GRBs are poorly known yet. Aiming to clarify the underlying physical mechanisms of the short GRBs, we analyzed GRB 160821B, one of the nearest short GRBs known at z=0.162, observed with the MAGIC telescopes. A hint of a gamma-ray signal is found above 0.5 TeV at a significance of >3 sigma during observations from 24 seconds until 4 hours after the burst, as presented in the past. Recently, multi-wavelength data of its afterglow emission revealed a well-sampled kilonova component from a BNS merger, and the importance of GRB 160821B increased concerning GRB-GW studies. Accordingly, we investigated GRB afterglow models again, using the revised multi-wavelength data. We found that the straightforward interpretation with one-zone synchrotron self-Compton model from the external forward shock is in tension with the observed TeV flux, contradicting the suggestion reported previously. In this contribution we discuss the implication from the TeV observation, including alternative scenarios where the TeV emission can be enhanced. We also give a brief outlook of future GeV-TeV observations of short GRBs with imaging atmospheric Cherenkov telescopes, which could shed more light on the GRB-BNS merger relation
- …