3,058 research outputs found

    Nonlinear oscillator with parametric colored noise: some analytical results

    Full text link
    The asymptotic behavior of a nonlinear oscillator subject to a multiplicative Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in terms of energy-angle coordinates, it is observed that the angle is a fast variable as compared to the energy. Thus, an effective stochastic dynamics for the energy can be derived if the angular variable is averaged out. However, the standard elimination procedure, performed earlier for a Gaussian white noise, fails when the noise is colored because of correlations between the noise and the fast angular variable. We develop here a specific averaging scheme that retains these correlations. This allows us to calculate the probability distribution function (P.D.F.) of the system and to derive the behavior of physical observables in the long time limit

    Self-Pulsating Semiconductor Lasers: Theory and Experiment

    Get PDF
    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure

    First order phase transition in a nonequilibrium growth process

    Full text link
    We introduce a simple continuous model for nonequilibrium surface growth. The dynamics of the system is defined by the KPZ equation with a Morse-like potential representing a short range interaction between the surface and the substrate. The mean field solution displays a non trivial phase diagram with a first order transition between a growing and a bound surface, associated with a region of coexisting phases, and a tricritical point where the transition becomes second order. Numerical simulations in 3 dimensions show quantitative agreement with mean field results, and the features of the phase space are preserved even in 2 dimensions.Comment: 7 figures, revtex, submitted to Phys. Rev.

    Spatiotemporal Chaos, Localized Structures and Synchronization in the Vector Complex Ginzburg-Landau Equation

    Full text link
    We study the spatiotemporal dynamics, in one and two spatial dimensions, of two complex fields which are the two components of a vector field satisfying a vector form of the complex Ginzburg-Landau equation. We find synchronization and generalized synchronization of the spatiotemporally chaotic dynamics. The two kinds of synchronization can coexist simultaneously in different regions of the space, and they are mediated by localized structures. A quantitative characterization of the degree of synchronization is given in terms of mutual information measures.Comment: 6 pages, using bifchaos.sty (included). 7 figures. Related material, including higher quality figures, could be found at http://www.imedea.uib.es/PhysDept/publicationsDB/date.html . To appear in International Journal of Bifurcation and Chaos (1999
    • 

    corecore