

Understanding the redox kinetics of oxygen carriers for chemical looping combustion

Citation for published version (APA):

San Pio Bordejé, M. A., Roghair, I., Gallucci, F., & Sint Annaland, van, M. (2014). Understanding the redox kinetics of oxygen carriers for chemical looping combustion. In *Proceedings of the Modification of Porous Media* Workshop, 11-12 November 2014, Bad Soden, Germany

Document status and date:

Published: 01/01/2014

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

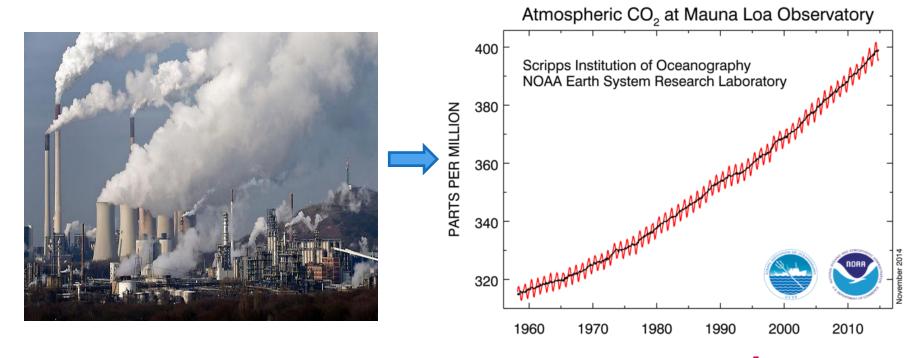
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

Understanding the redox kinetics of oxygen carriers for chemical looping combustion

M. A. San Pio Bordeje, I. Roghair, F. Gallucci, M. van Sint Annaland

Chemical Process Intensification, Eindhoven University of Technology, The Netherlands



Where innovation starts

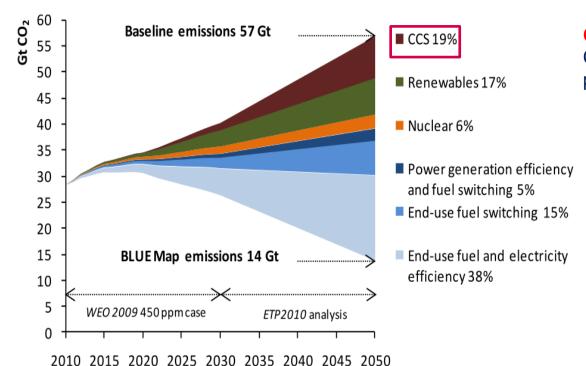
Emissions of greenhouse gases (GHG) to the atmosphere are expected to cause significant global climate change.

Carbon Dioxide (CO₂) is the primary greenhouse gas emitted through human activities.

THE CO₂ PROBLEM

Introduction

Exp. Studies
Particle Model
Conclusions



CARBON CAPTURE AND STORAGE

Introduction

Exp. Studies
Particle Model
Conclusions

CCS: Important strategy for reducing CO₂ emissions from fossil based power plants

Chemical Looping is one of the most promising technologies of CCS as it presents the lowest energy penalty.

Source: IEA Energy Technology Perspectives (2010) Scenarios and strategies to 2050

Introduction

ENERGY PRODUCTION WITH CO₂ CAPTURE

Exp. Studies Particle Model Conclusions

Chemical Looping Combustion (CLC)

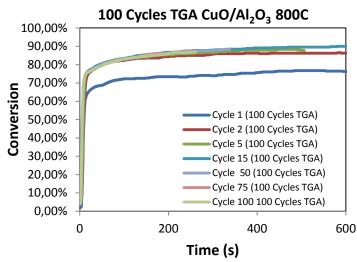
Heat recovery + H₂O separation $CO_2 + H_2O$ $N_2 (+O_2)$ MeO Oxidation CLC gasifier Air Syngas Coal or biomass

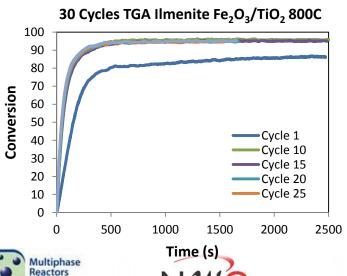
CLC involves

- Two Packed Bed Reactors (PBR)
 - Fuel reactor
 - Air reactor
- Redox chemistry (metal)
- Periodic operation

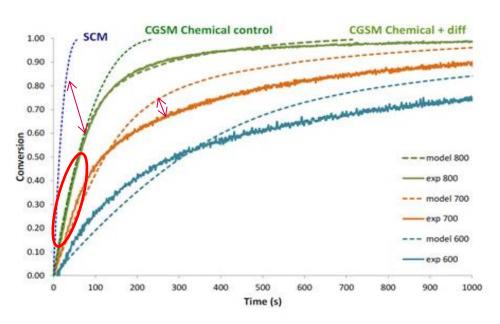
CLC can achieve

- High level of CO₂ capture
- Low energy carbon capture penalty





Introduction

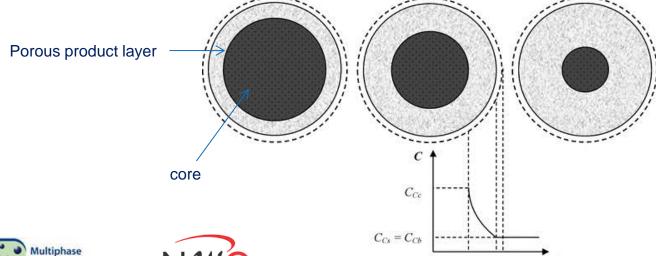

OXYGEN CARRIER KINETICS

Exp. Studies
Particle Model
Conclusions

Netherlands Organisation for Scientific Research

Ilmenite conversion profiles as a function of time on stream (with 15% CO in N₂)

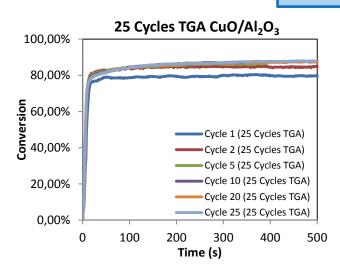
PBR: Conversion 0-100% every cycle


Important to predict the real final conversion

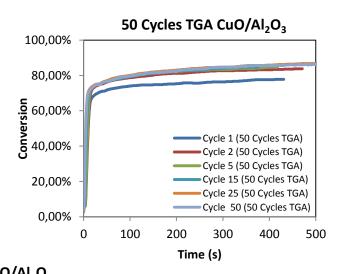
Exp. Studies
Particle Model
Conclusions

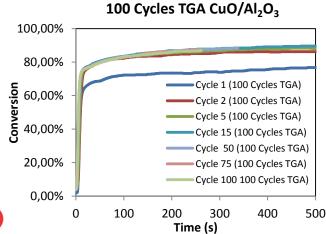
Shrinking Core Model Assumptions

- Reaction located in the surface
- Porosity of the particle very small and uniform in each layer
- Resistance to gas diffusion very high
- Harmonic average effective diffusion coefficient
- Convection of the gas negligible if compared to the diffusive fluxes
- Kinetic is first order


Introduction

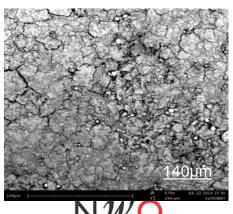
Exp. Studies


Particle Model


Conclusions

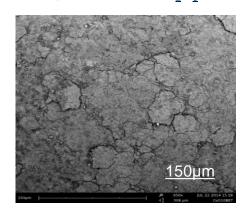
Thermo-Gravimetric-Analysis (TGA)

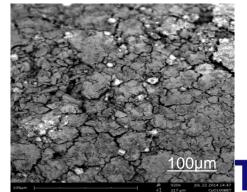
Netherlands Organisation for Scientific Research


Introduction
Exp. Studies
Particle Model
Conclusions

Scanning Electron Microscopy (SEM)

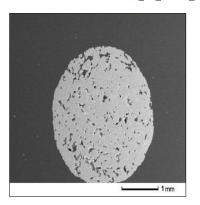
Fresh CuO/Al₂O₃

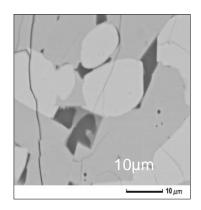

50 Cycles TGA CuO/Al₂O₃

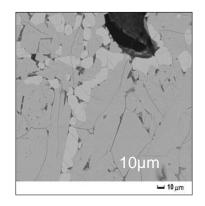

Netherlands Organisation for Scientific Research

Multiphase Reactors

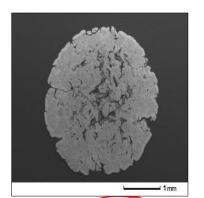
10 Cycles TGA CuO/Al₂O₃

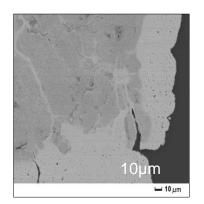

100 Cycles TGA CuO/Al₂O₃

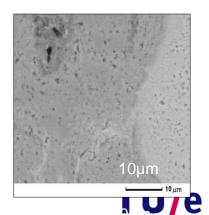



Introduction
Exp. Studies
Particle Model
Conclusions

Scanning Electron Microscopy (SEM)


Fresh Ilmenite (Fe₂O₃/TiO₂)

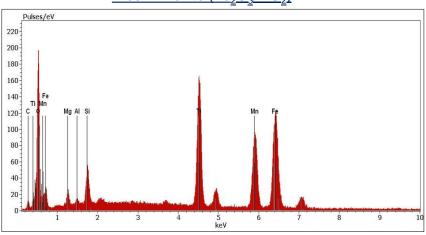


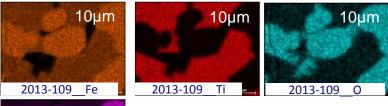


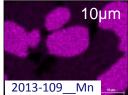
Activated Ilmenite (Fe₂O₃/TiO₂)

Technische Universiteit **Eindhoven** University of Technology

Introduction

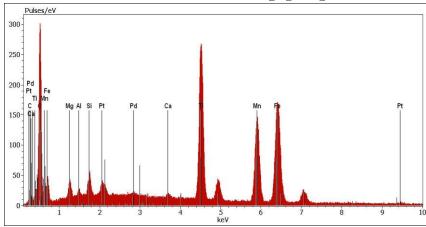

Exp. Studies

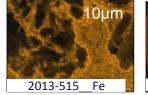

Particle Model

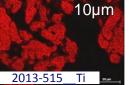

Conclusions

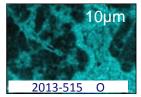
Scanning Electron Microscopy (SEM) + Energy-Dispersive X-ray spectroscopy (EDX)

Fresh Ilmenite (Fe₂O₃/TiO₂)







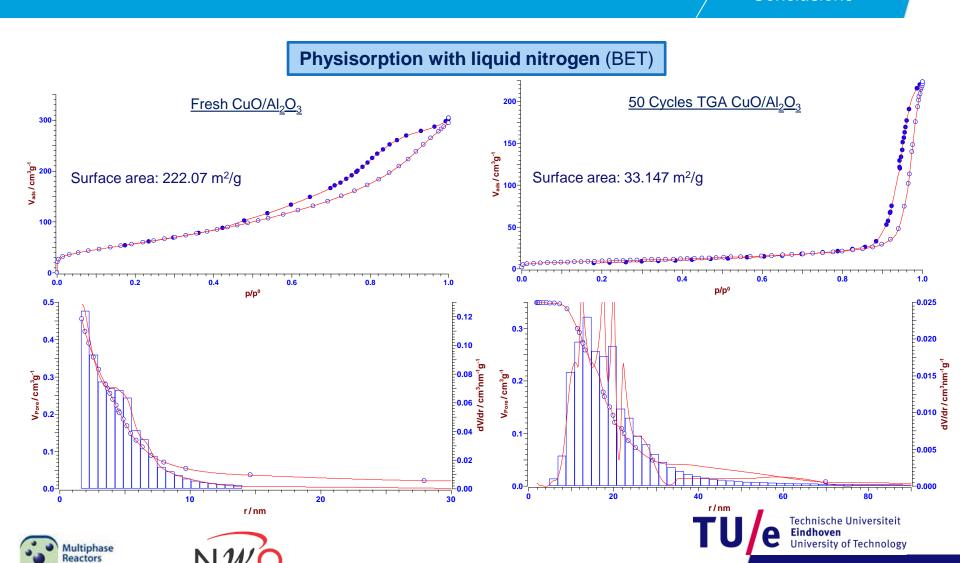

Multiphase Reactors Netherlands Organisation for Scientific Research

Activated Ilmenite (Fe₂O₃/TiO₂)

10μm 2013-515 Mn

Thanks to VITO for the images

Technische Universiteit **Eindhoven** University of Technology


Netherlands Organisation for Scientific Research

Introduction

Exp. Studies

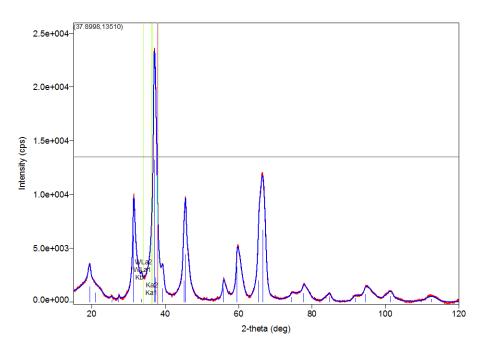
Particle Model

Conclusions

Introduction

Exp. Studies

Particle Model


Conclusions

X-Ray Diffraction (XRD)

Fresh CuO/Al₂O₃

5.0e+003-4.0e+003-1.0e+003-0.0e+000-20 40 60 80 100 120

25 CYCLES TGA CuO/Al₂O₃

Introduction

Exp. Studies

Particle Model

Conclusions

X-Ray Diffraction (XRD)

Components	Fresh	25 Cycles	75 Cycles	100 Cycles
Tenorite (CuO)	X	Х	X	X
Aluminium Oxide (Al ₂ O ₃)	X	X	X	X
Spinel (CuAl ₂ O ₄)	X	X	X	X
Gamma-alumina (Al ₂₆₇ O ₄)	X	X	X	X
Copper aluminium oxide (CuAlO ₂)			X	
Cuprite (Cu ₂ O)				X

$$\begin{aligned} \operatorname{CuO} + \operatorname{H}_2 &\to \operatorname{Cu} + \operatorname{H}_2\operatorname{O} \\ 2\operatorname{CuO} + \operatorname{H}_2 &\to \operatorname{Cu}_2\operatorname{O} + \operatorname{H}_2\operatorname{O} \\ \operatorname{Cu}_2\operatorname{O} + \operatorname{H}_2 &\to 2\operatorname{Cu} + \operatorname{H}_2\operatorname{O} \end{aligned}$$

$$Cu + \frac{1}{2}O_2 \rightarrow CuO$$

$$CuO+ Al_2O_3 \rightarrow CuAl_2O_4$$

$$4CuAl_2O_4 \rightarrow 4CuAlO_2 + 2Al_2O_3 + O_2$$

$$CuAlO_2 + O_2 \rightarrow 4CuAl_2O_2 + 2Cu_2O$$

New phases are formed while the number of redox reactions increases

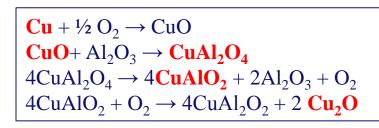
PARTICLE MODEL

Introduction
Exp. Studies
Particle Model
Conclusions

SCM Assumptions

- Reaction located in the surface
 SEM + XRD
- Porosity of the particle very small and uniform in each layer
 SEM
- Resistance to gas diffusion very high TGA
- Harmonic average effective diffusion coefficient SEM + BET
- Convection of the gas negligible if compared to the diffusive fluxes
 TGA
- Kinetic is first order XRD

New Particle Model

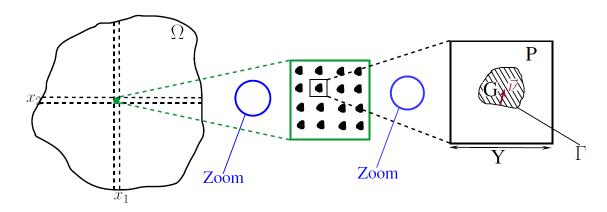


Kinetics of the components detected in the XRD analysis: Kinetics

Reduction:

$$\begin{aligned} & \textbf{CuO} + \textbf{H}_2 \rightarrow \textbf{Cu} + \textbf{H}_2 \textbf{O} \\ & 2\textbf{CuO} + \textbf{H}_2 \rightarrow \textbf{Cu}_2 \textbf{O} + \textbf{H}_2 \textbf{O} \\ & \textbf{Cu}_2 \textbf{O} + \textbf{H}_2 \rightarrow 2\textbf{Cu} + \textbf{H}_2 \textbf{O} \end{aligned}$$

Oxidation:



Homogenization in porous media: Diffusion

Two sub-domains: the "inner" grain G surrounded by the pore P. With Γ being the boundary of G.

$$(P(x)) = \begin{cases} -\nabla \cdot \left(\mathbf{D}_{eff}(\mathbf{x}) \nabla U \right) = f, & \text{for all } \mathbf{x} \in \Omega \\ \mathbf{U} = 0, & \text{on } \partial \Omega \end{cases}$$

Effective diffusion coefficient taking into account all the pore sizes and porosity.

CONCLUSIONS

- O The morphology in terms of porosity doesn't really describe the kinetics.
- O The change can be due to thermodynamics or to solid diffusion.
- O No constant or homogeneous pore size is observed in the experiments.
- O New phases are formed in the redox cycles affecting the kinetics of the OC.
- O The different phases and a better description of the effective diffusion coefficient (gas or solid) have to be included in the new particle model.

ACKNOWLEDGMENTS

NWO for the financial support of this project under the ECHO-STIP grant 717.013.007

Group of Chemical Process Intensification

- Prof. M. van Sint Annaland
- Dr. F. Gallucci
- Dr. I. Roghair

Thank you for your attention

