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Carbon Dioxide (CO2) is the primary greenhouse gas emitted through human activities. 

Emissions of greenhouse gases (GHG) to the atmosphere are expected to cause significant global 

climate change. 
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CARBON CAPTURE AND STORAGE 
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CCS: Important strategy for reducing 

CO2 emissions from fossil based power 

plants 

Chemical Looping is one of the 

most promising technologies of 

CCS as it presents the lowest 

energy penalty. 

Source: IEA Energy Technology Perspectives (2010) Scenarios and strategies to 2050 
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Chemical Looping Combustion (CLC)  

CLC can achieve  

Low energy carbon capture penalty 

CLC involves  

Redox chemistry (metal) 

Periodic operation 

Two Packed Bed Reactors (PBR) 

Fuel reactor 

Air reactor 
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High level of CO2 capture 
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PBR: Conversion 0-100% every cycle 

Important to predict the real final conversion 
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Porous product layer  
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Shrinking Core Model Assumptions  

Porosity of the particle very small and uniform in each layer 

Resistance to gas diffusion very high 

Harmonic average effective diffusion coefficient 

Introduction 

Exp. Studies 

Particle Model 

Conclusions 

Convection of the gas negligible if compared to the diffusive fluxes 

Reaction located in the surface 

Kinetic is first order 
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Thermo-Gravimetric-Analysis (TGA) 
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100µm 

150µm 

140µm 
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100 Cycles TGA CuO/Al2O3 50 Cycles TGA CuO/Al2O3 

Scanning Electron Microscopy (SEM) 
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Scanning Electron Microscopy (SEM) 
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Scanning Electron Microscopy (SEM) + Energy-Dispersive X-ray spectroscopy (EDX) 

EXPERIMENTAL STUDIES 
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Thanks to VITO for the images 
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EXPERIMENTAL STUDIES 

Physisorption with liquid nitrogen (BET) 
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EXPERIMENTAL STUDIES 

X-Ray Diffraction (XRD) 
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EXPERIMENTAL STUDIES 

X-Ray Diffraction (XRD) 

Introduction 

Exp. Studies 

Particle Model 

Conclusions 

  Components Fresh 25 Cycles 75 Cycles 100 Cycles 

Tenorite (CuO) X X X X 

Aluminium Oxide 
(Al2O3) 

X X X X 

Spinel (CuAl2O4) X X X X 

Gamma-alumina 
(Al2.67 O4) 

X X X X 

Copper aluminium 
oxide (CuAlO2) 

X 

Cuprite (Cu2O) X 

New phases are formed while the number of redox reactions increases 

These components can influence the kinetics of the OC 

CuO + H2 → Cu + H2O 

2CuO + H2 → Cu2O + H2O 

Cu2O + H2 → 2Cu + H2O     

Cu + ½ O2 → CuO 

CuO+ Al2O3 → CuAl2O4  

4CuAl2O4 → 4CuAlO2 + 2Al2O3 + O2 

4CuAlO2 + O2 → 4CuAl2O2 + 2 Cu2O 
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PARTICLE MODEL 
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SCM Assumptions   

New Particle Model 

SEM 

TGA 

SEM + BET 

SEM + XRD 

XRD 

Porosity of the particle very small and uniform in each layer 

Resistance to gas diffusion very high 

Harmonic average effective diffusion coefficient 

Convection of the gas negligible if compared to the diffusive fluxes 

Reaction located in the surface 

Kinetic is first order 

TGA 
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PARTICLE MODEL 

Kinetics of the components detected in the XRD analysis: Kinetics 
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CuO + H2 → Cu + H2O 

2CuO + H2 → Cu2O + H2O 

Cu2O + H2 → 2Cu + H2O     

Cu + ½ O2 → CuO 

CuO+ Al2O3 → CuAl2O4  

4CuAl2O4 → 4CuAlO2 + 2Al2O3 + O2 

4CuAlO2 + O2 → 4CuAl2O2 + 2 Cu2O 

Reduction: 

Oxidation: 
Cu 

CuO 

Cu2O 

CuAl2O4 

CuAlO2 
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PARTICLE MODEL 

Homogenization in porous media: Diffusion 

Two sub-domains: the “inner” grain G surrounded by the pore P. With Γ being the boundary of G. 

(𝑃(𝑥)) 
−𝛻 ∙ 𝑫𝒆𝒇𝒇 𝒙 𝛻𝑈 = 𝑓, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝜖 Ω 

U= 0, 𝑜𝑛 𝜕Ω 

Effective diffusion coefficient 

taking into account all the pore 

sizes and porosity. 
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The change can be due to thermodynamics or to solid diffusion. 
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CONCLUSIONS 
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The morphology in terms of porosity doesn’t really describe the kinetics. 

New phases are formed in the redox cycles affecting the kinetics of the OC. 

No constant or homogeneous pore size is observed in the experiments. 

The different phases and a better description of the effective diffusion 

coefficient (gas or solid) have to be included in the new particle model. 

No constant or homogeneous pore size is observed in the experiments. 

The change can be due to thermodynamics or to solid diffusion. 

New phases are formed in the redox cycles affecting the kinetics of the OC. 

The different phases and a better description of the effective diffusion 

coefficient (gas or solid) have to be included in the new particle model. 
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