10 research outputs found

    Diapycnal mixing across the photic zone of the NE Atlantic

    Get PDF
    Variable physical conditions such as vertical turbulent exchange, internal wave, and mesoscale eddy action affect the availability of light and nutrients for phytoplankton (unicellular algae) growth. It is hypothesized that changes in ocean temperature may affect ocean vertical density stratification, which may hamper vertical exchange. In order to quantify variations in physical conditions in the northeast Atlantic Ocean, we sampled a latitudinal transect along 17 ± 5∘ W between 30 and 63∘ N in summer. A shipborne conductivity–temperature–depth (CTD) instrumented package was used with a custom-made modification of the pump inlet to minimize detrimental effects of ship motions on its data. Thorpe-scale analysis was used to establish turbulence values for the upper 500 m from three to six profiles obtained in a short CTD yo-yo, 3 to 5 h after local sunrise. From south to north, average temperature decreased together with stratification while turbulence values weakly increased or remained constant. Vertical turbulent nutrient fluxes did not vary significantly with stratification and latitude. This apparent lack of correspondence between turbulent mixing and temperature is likely due to internal waves breaking (increased stratification can support more internal waves), acting as a potential feedback mechanism. As this feedback mechanism mediates potential physical environment changes in temperature, global surface ocean warming may not affect the vertical nutrient fluxes to a large degree. We urge modellers to test this deduction as it could imply that the future summer phytoplankton productivity in stratified oligotrophic waters would experience little alterations in nutrient input from deeper waters

    The role of the Dotson Ice Shelf and Circumpolar Deep Water as driver and source of dissolved and particulate iron and manganese in the Amundsen Sea polynya, Southern Ocean

    Get PDF
    Coastal areas around Antarctica such as the Amundsen Sea are important sources of trace metals and biological hotspots, but are also experiencing the effects of climate change, including the rapid thinning of ice sheets. In the central Amundsen Sea Polynya (ASP), both bio-essential dissolved Fe (DFe) and dissolved Mn (DMn) were found to be depleted at the surface, indicating substantial biological uptake and/or precipitation. Close to the Dotson Ice Shelf (DIS) there were elevated surface concentrations of DMn (>3 nM) but surprisingly not for DFe (100 m depth). We compared different uptake ratios, underlining that uptake ratio estimates do not necessarily capture natural variability and it is likely better to use a range of values. In the future, climate change may increase the heat flux of mCDW and thereby the melting of the DIS. This will most likely cause an increased input of Fe and Mn into the ASP, which may fuel increased levels of primary productivity in the ASP

    Clinical decision trees support systematic evaluation of multidisciplinary team recommendations

    Get PDF
    Purpose: EUSOMA’s recommendation that “each patient has to be fully informed about each step in the diagnostic and therapeutic pathway” could be supported by guideline-based clinical decision trees (CDTs). The Dutch breast cancer guideline has been modeled into CDTs (www.oncoguide.nl). Prerequisites for adequate CDT usage are availability of necessary patient data at the time of decision-making and to consider all possible treatment alternatives provided in the CDT. Methods: This retrospective single-center study evaluated 394 randomly selected female patients with non-metastatic breast cancer between 2012 and 2015. Four pivotal CDTs were selected. Two researchers analyzed patient records to determine to which degree patient data required per CDT were available at the time of multidisciplinary team (MDT) meeting and how often multiple alternatives were actually reported. Results: The four selected CDTs were indication for magnetic resonance imaging (MRI) scan, preoperative and adjuvant systemic treatment, and immediate breast reconstruction. For 70%, 13%, 97% and 13% of patients, respectively, all necessary data were available. The two most frequent underreported data-items were “clinical M-stage” (87%) and “assessable mammography” (28%). Treatment alternatives were reported by MDTs in 32% of patients regarding primary treatment and in 28% regarding breast reconstruction. Conclusion: Both the availability of data in patient records essential for guideline-based recommendations and the reporting of possible treatment alternatives of the investigated CDTs were low. To meet EUSOMA’s requirements, information that is supposed to be implicitly known must be explicated by MDTs. Moreover, MDTs have to adhere to clear definitions of data-items in their reporting

    Trace Metals Amundsen Sea Araon ANA08B

    No full text
    Samples were collected onboard the South Korean icebreaker RV Araon during the ANA08B research expedition to the Amundsen Sea in the austral summer of 2017/2018. The sampling period spanned from the 24th of January to the 2nd of February 2018. A total of 10 full depth stations were investigated with a maximum of 12 sampling depths. The transect followed the in- and outflow of CDW in the ASP through a trough near the Dotson ice shelf. The ASP was surrounded by sea ice at the start of the sampling campaign, whereas the polynya had started to open to the open ocean on the northwest side by the end of sampling. Along this transect, station 53 was located off the shelf and outside the polynya in the marginal sea ice zone, station 52 was located near the outermost edge of the polynya at the shelf break, stations 42 and 36 were located at the Dotson Ice Shelf front on the in -and outflow side respectively, and the remaining stations were located in the central open water body of the ASP. Water was collected with the ?Titan? ultraclean CTD sampling system for trace metals mounted with pristine large volume samplers. To prevent light shock of phytoplankton, the original PVDF samplers were replaced by a light-proof version of the Pristine samplers and were made from polypropylene. The salinity (conductivity), temperature, fluorescence, depth (pressure) and oxygen were measured with a CTD (Seabird SBE 911+) mounted on the trace metal clean sampling system of NIOZ. The sampling system was deployed on a 11 mm Dyneema cable without internal conductive wires and therefore an SBE 17 plus V2 Searam in a titanium housing provided power, saved the CTD data and closed the sampling bottles at pre-programmed depths. After deployment, the complete CTD sampling system was placed in a cleanroom environment inside a modified high cube shipping container and subsamples were collected

    Diapycnal nutrient mixing

    No full text
    In this data file nutrient, DFe and raw CTD data are available used for the paper "Diapycnal mixing across the photic zone of the NE-Atlantic". Variable physical conditions such as vertical turbulent exchange, internal wave and mesoscale eddy action, affect the availability of light and nutrients for phytoplankton (unicellular algae) growth. It is hypothesized that changes in ocean temperature may affect ocean vertical density stratification, which may hamper vertical exchange. In order to quantify variations in physical conditions in the Northeast Atlantic Ocean, we sampled a latitudinal transect along 17 degrees 5minutes W between 30 and 63 degrees N in summer. A shipborne Conductivity-Temperature-Depth CTD-instrumented package was used with a custom-made modification of the pump-inlet to minimize detrimental effects of ship motions on its data. Thorpe-scale analysis was used to establish turbulence values for the upper 500 m from 3 to 6 profiles obtained in a short CTD-yoyo, 3 to 5 h after local sunrise. From south to north, average temperature decreased together with stratification while turbulence values weakly increased or remained constant. Vertical turbulent nutrient fluxes did not vary significantly with stratification and latitude. This apparent lack of correspondence between turbulent mixing and temperature is likely due to internal waves breaking (increased stratification can support more internal waves), acting as a potential feed-back mechanism. As this feed-back mechanism mediates potential physical environment changes in temperature, global surface ocean warming may not affect the vertical nutrient fluxes to a large degree. We urge modelers to test this deduction as it could imply that the future summer phytoplankton productivity in stratified oligotrophic waters would experience little alterations in nutrient input from deeper waters

    Biogeochemistry of iron in coastal Antarctica:isotopic insights for external sources and biological uptake in the Amundsen Sea polynyas

    No full text
    Seasonal phytoplankton blooms in the Antarctic Amundsen Sea Polynyas are thought to be supported by an external supply of iron (Fe) from circumpolar deep waters, benthic sediments, and/or ice shelf meltwaters. However, largely due to the limited amount of Fe data reported for the Amundsen Sea Polynyas, understanding of the sources and processes that affect the biogeochemistry of Fe in this region (notably within the ice shelf system) remains limited. Here, we present the first investigation of dissolved Fe isotope distributions (ή56Fe) along the conveyer belt of waters into and through the Amundsen Sea, via the Dotson Ice Shelf, from samples collected during austral summer (2017–2018). Our dataset allows us to characterize and compare the dissolved ή56Fe signatures of incoming modified Circumpolar Deep Water (mCDW) and of sedimentary sources on the continental shelf. The range in dissolved ή56Fe (–1 to +0.1 ‰) observed in the Amundsen Sea close to the seafloor, coupled with elevated dissolved Fe concentrations (up to 1.6 nmol/L), suggests that Fe is released from shelf sediments via a combination of reductive and non-reductive processes, with non-reductive dissolution input being relatively more important (20–56 %) than reductive dissolution (4–12 %). Near the Dotson Ice Shelf, the ή56Fe in the mCDW inflow (–0.70 ‰) was lower than the mCDW outflow (–0.23 ‰), whereas any change in dissolved Fe concentrations was negligible. We speculate that this shift in dissolved ή56Fe underneath the ice shelf is driven by a combination of enhanced preservation (and addition) of lithogenic colloidal Fe(III) and/or complexation with Fe-binding ligands, together with a differential loss of Fe2+. We also found distinct ή56Fe signatures in surface waters of the polynya, with apparent preferential uptake of isotopically light Fe in a bloom dominated by diatoms leading to a relatively heavy remnant dissolved ή56Fe signature of +1.06 ‰, compared to a bloom dominated by haptophytes where more modest and variable isotope fractionation was observed. The different isotopic composition between the two regions could be related to the dominance of different species, but this remains speculative. Despite prominent biological uptake, we suggest that other factors such as rapid recycling (e.g., adsorption and regeneration), bacterial regeneration, and complexation with organic ligands, together with the supply of lithogenic particles also play important roles in setting surface dissolved ή56Fe in the Amundsen Sea Polynyas. Overall, this study provides a further understanding of the external Fe sources and the biogeochemical processes in the Amundsen Sea and thus a baseline on how changing conditions in Antarctica can affect Fe cycling in the Southern Ocean and beyond.</p

    The biogeochemistry of zinc and cadmium in the Amundsen Sea, coastal Antarctica

    Get PDF
    The trace metals zinc (Zn) and cadmium (Cd) are both involved in the metabolic processes of marine phytoplankton, and as such, both metals play important roles in ocean biogeochemical cycles. In Antarctica, the Amundsen Sea (AS) experiences rapid ice shelf melting, and the Amundsen Sea polynya (ASP) hosts seasonal phytoplankton blooms in austral summer, with important implications for atmospheric carbon dioxide drawdown. However, the effects of ice melting and phytoplankton blooms on the biogeochemistry and distributions of Zn and Cd in the ASP remain poorly studied. Here, we present the first combined dataset of dissolved and particulate Zn and Cd in the AS (including the inflow and outflow to and from the Dotson and Getz ice shelves) collected as part of the GEOTRACES process study GPpr12. We use this dataset to assess the sources of both elements to the AS region and characterize the particle composition in the ASP. We find that the main source of both dissolved Zn and Cd in the AS is Circumpolar Deep Water (CDW), with an additional small flux of both metals from shelf sediments. By contrast, aerosol deposition, ice shelf melt, and sea ice melt are all deemed insignificant sources for either Zn or Cd in the AS. Labile particulate Zn and Cd dominate the total particulate pool in the surface layer, indicating that biological uptake is a predominant process for the cycling of both metals in the ASP, whereas sediment resuspension and ice shelf melt do not supply a significant amount of either particulate Zn or Cd. Additionally, we use two commonly used approaches to estimate biogenic and lithogenic particulate concentrations. We find high biogenic particulate concentrations at the surface, decreasing with depth, indicating remineralization plays an important role in the cycling of particulate metals. In contrast, lithogenic particulate metal concentrations remain low throughout the water column. We also show that the estimated uptake ratios of Zn and Cd relative to phosphate in the surface layer are lower than reported for the open Southern Ocean, likely related to the spatial and temporal variability of Fe in the AS. Overall, these new observations provide insight into the biogeochemistry of both Zn and Cd in the AS, a region that is subject to the influence of rapid climate change, which may have implications for the larger-scale cycling of trace metals in the Southern Ocean. Specifically, the amount of Zn and Cd supplied to the surface ASP will increase, given that the volume of CDW that flows towards the Dotson Ice Shelf is predicted to increase

    The role of the Dotson Ice Shelf and Circumpolar Deep Water as driver and source of dissolved and particulate iron and manganese in the Amundsen Sea polynya, Southern Ocean

    Get PDF
    Coastal areas around Antarctica such as the Amundsen Sea are important sources of trace metals and biological hotspots, but are also experiencing the effects of climate change, including the rapid thinning of ice sheets. In the central Amundsen Sea Polynya (ASP), both bio-essential dissolved Fe (DFe) and dissolved Mn (DMn) were found to be depleted at the surface, indicating substantial biological uptake and/or precipitation. Close to the Dotson Ice Shelf (DIS) there were elevated surface concentrations of DMn (>3 nM) but surprisingly not for DFe (100 m depth). We compared different uptake ratios, underlining that uptake ratio estimates do not necessarily capture natural variability and it is likely better to use a range of values. In the future, climate change may increase the heat flux of mCDW and thereby the melting of the DIS. This will most likely cause an increased input of Fe and Mn into the ASP, which may fuel increased levels of primary productivity in the ASP

    Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    No full text
    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B-1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiaminedependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported
    corecore