1,939 research outputs found
Anaerobic membrane bioreactors: Are membranes really necessary?
Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A self-forming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the application of self-forming dynamic membranes in AnMBRs. An AnMBR was operated under thermophilic and mesophilic conditions, using woven and non woven materials as support for the dynamic membranes. Results showed that the formation of a cake layer over the support materials enables the retention of more than 99% of the solids present in the reactor. However, only low levels of flux were achieved, up to 3 L/m2 x h, and reactor operation was unstable, with sudden increases in filtration resistance, due to excessive cake layer formation. Further fine-tuning of the proposed technology involves looking for conditions that can control effectively cake layer formatio
Recommended from our members
A Bayesian approach for statistical–physical bulk parameterization of rain microphysics. Part II: Idealized Markov chain Monte Carlo experiments
Observationally informed development of a new framework for bulk rain microphysics, the Bayesian Observationally Constrained Statistical–Physical Scheme (BOSS; described in Part I of this study), is demonstrated. This scheme’s development is motivated by large uncertainties in cloud and weather simulations associated with approximations and assumptions in existing microphysics schemes. Here, a proof-of-concept study is presented using a Markov chain Monte Carlo sampling algorithm with BOSS to probabilistically estimate microphysical process rates and parameters directly from a set of synthetically generated rain observations. The framework utilized is an idealized steady-state one-dimensional column rainshaft model with specified column-top rain properties and a fixed thermodynamical profile. Different configurations of BOSS—flexibility being a key feature of this approach—are constrained via synthetic observations generated from a traditional three-moment bulk microphysics scheme. The ability to retrieve correct parameter values when the true parameter values are known is illustrated. For cases when there is no set of true parameter values, the accuracy of configurations of BOSS that have different levels of complexity is compared. It is found that addition of the sixth moment as a prognostic variable improves prediction of the third moment (proportional to bulk rain mass) and rain rate. In contrast, increasing process rate formulation complexity by adding more power terms has little benefit—a result that is explained using further-idealized experiments. BOSS rainshaft simulations are shown to well estimate the true process rates from constraint by bulk rain observations, with the additional benefit of rigorously quantified uncertainty of these estimates
Testing links between childhood positive peer relations and externalizing outcomes through a randomized controlled intervention study
In this study, the authors used a randomized controlled trial to explore the link between having positive peer relations and externalizing outcomes in 758 children followed from kindergarten to the end of 2nd grade. Children were randomly assigned to the Good Behavior Game (GBG), a universal classroombased preventive intervention, or a control condition. Children’s acceptance by peers, their number of mutual friends, and their proximity to others were assessed annually through peer ratings. Externalizing behavior was annually rated by teachers. Reductions in children’s externalizing behavior and improvements in positive peer relations were found among GBG children, as compared with control-group children. Reductions in externalizing behavior appeared to be partly mediated by the improvements in peer acceptance. This mediating role of peer acceptance was found for boys only. The results suggest that positive peer relations are not just markers, but they are environmental mediators of boys’ externalizing behavior development. Implications for research and prevention are discussed
Estimation of age-specific rates of reactivation and immune boosting of the varicella zoster virus
Studies into the impact of vaccination against the varicella zoster virus (VZV) have increasingly focused on herpes zoster (HZ), which is believed to be increasing in vaccinated populations with decreasing infection pressure. This idea can be traced back to Hope-Simpson's hypothesis, in which a person's immune status determines the likelihood that he/she will develop HZ. Immunity decreases over time, and can be boosted by contact with a person experiencing varicella (exogenous boosting) or by a reactivation attempt of the virus (endogenous boosting). Here we use transmission models to estimate age-specific rates of reactivation and immune boosting, exogenous as well as endogenous, using zoster incidence data from the Netherlands (2002–2011, n = 7026). The boosting and reactivation rates are estimated with splines, enabling these quantities to be optimally informed by the data. The analyses show that models with high levels of exogenous boosting and estimated or zero endogenous boosting, constant rate of loss of immunity, and reactivation rate increasing with age (to more than 5% per year in the elderly) give the best fit to the data. Estimates of the rates of immune boosting and reactivation are strongly correlated. This has important implications as these parameters determine the fraction of the population with waned immunity. We conclude that independent evidence on rates of immune boosting and reactivation in persons with waned immunity are needed to robustly predict the impact of varicella vaccination on the incidence of HZ.PIENTER2 serological stud
Bioremoval of humic acid from water by white rot fungi : exploring the removal mechanisms
Altres ajuts: This Research is part of research program "Increasing the utilization of organic waste and low value feeds with help of lignin degrading fungi" with project number 11611, and is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.Twelve white rot fungi (WRF) strains were screened on agar plates for their ability to bleach humic acid (HA). Four fungal strains were selected and tested in liquid media for removal of HA. Bioremediation was investigated by HA color removal and changes in the concentration and molecular size distribution of HA by size exclusion chromatography. Trametes versicolor and Phanerochaete chrysosporium showed the highest HA removal efficiency, reaching about 80%. Laccase and manganese peroxidase were measured as extracellular enzymes and their relation to the HA removal by WRF was investigated. Results indicated that nitrogen limitation could enhance the WRF extracellular enzyme activity, but did not necessarily increase the HA removal by WRF. The mechanism of bioremediation by WRF was shown to involve biosorption of HA by fungal biomass and degradation of HA to smaller molecules. Also, contradicting previous reports, it was shown that the decolorization of HA by WRF could not necessarily be interpreted as degradation of HA. Biosorption experiments revealed that HA removal by fungal biomass is dependent not only on the amount of biomass as the sorbent, but also on the fungal species. The involvement of cytochrome P450 (CYP) enzymes was confirmed by comparing the HA removal capability of fungi with and without the presence of a CYP inhibitor. The ability of purified laccase from WRF to solely degrade HA was proven and the importance of mediators was also demonstrated
- …