10,910 research outputs found

    Conserving Approximations in Time-Dependent Density Functional Theory

    Get PDF
    In the present work we propose a theory for obtaining successively better approximations to the linear response functions of time-dependent density or current-density functional theory. The new technique is based on the variational approach to many-body perturbation theory (MBPT) as developed during the sixties and later expanded by us in the mid nineties. Due to this feature the resulting response functions obey a large number of conservation laws such as particle and momentum conservation and sum rules. The quality of the obtained results is governed by the physical processes built in through MBPT but also by the choice of variational expressions. We here present several conserving response functions of different sophistication to be used in the calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio

    Algorithms to measure diversity and clustering in social networks through dot product graphs.

    Get PDF
    Social networks are often analyzed through a graph model of the network. The dot product model assumes that two individuals are connected in the social network if their attributes or opinions are similar. In the model, a d-dimensional vector a v represents the extent to which individual v has each of a set of d attributes or opinions. Then two individuals u and v are assumed to be friends, that is, they are connected in the graph model, if and only if a u · a v  ≥ t, for some fixed, positive threshold t. The resulting graph is called a d-dot product graph.. We consider two measures for diversity and clustering in social networks by using a d-dot product graph model for the network. Diversity is measured through the size of the largest independent set of the graph, and clustering is measured through the size of the largest clique. We obtain a tight result for the diversity problem, namely that it is polynomial-time solvable for d = 2, but NP-complete for d ≥ 3. We show that the clustering problem is polynomial-time solvable for d = 2. To our knowledge, these results are also the first on the computational complexity of combinatorial optimization problems on dot product graphs. We also consider the situation when two individuals are connected if their preferences are not opposite. This leads to a variant of the standard dot product graph model by taking the threshold t to be zero. We prove in this case that the diversity problem is polynomial-time solvable for any fixed d

    Global fixed point proof of time-dependent density-functional theory

    Full text link
    We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.Comment: 4 pages, 1 figur

    Evaluating the performance of Iterative Proportional Fitting for spatial microsimulation: new tests for an established technique

    Get PDF
    Iterative Proportional Fitting (IPF), also known as biproportional fitting, ‘raking’ or the RAS algorithm, is an established procedure used in a variety of applications across the social sciences. Primary amongst these for urban modelling has been its use in static spatial microsimulation to generate small area microdata — individual level data allocated to administrative zones. The technique is mature, widely used and relatively straight-forward. Although IPF is well described mathematically, accessible examples of the algorithm written in modern programming languages are rare. Therefore, there is a tendency for researchers to ‘start from scratch’, resulting in a variety of ad hoc implementations and little evidence about the relative merits of different approaches. These knowledge gaps mean that answers to certain methodological questions must be guessed: How can ‘empty cells’ be identified and how do they influence model fit? Can IPF be made more computationally efficient? This paper tackles these questions and more using a systematic methodology with publicly available code and data. The results demonstrate the sensitivity of the results to initial conditions, notably the presence of ‘empty cells’, and the dramatic impact of software decisions on computational efficiency. The paper concludes by proposing an agenda for robust and transparent future tests in the field

    Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory

    Full text link
    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed

    A deconvolution map-making method for experiments with circular scanning strategies

    Full text link
    Aims. To investigate the performance of a deconvolution map-making algorithm for an experiment with a circular scanning strategy, specifically in this case for the analysis of Planck data, and to quantify the effects of making maps using simplified approximations to the true beams. Methods. We present an implementation of a map-making algorithm which allows the combined treatment of temperature and polarisation data, and removal of instrumental effects, such as detector time constants and finite sampling intervals, as well as the deconvolution of arbitrarily complex beams from the maps. This method may be applied to any experiment with a circular scanning-strategy. Results. Low-resolution experiments were used to demonstrate the ability of this method to remove the effects of arbitrary beams from the maps and to demonstrate the effects on the maps of ignoring beam asymmetries. Additionally, results are presented of an analysis of a realistic full-scale simulated data-set for the Planck LFI 30 GHz channel. Conclusions. Our method successfully removes the effects of the beams from the maps, and although it is computationally expensive, the analysis of the Planck LFI data should be feasible with this approach.Comment: 14 pages, 14 figures, accepte

    First optical images of circumstellar dust surrounding the debris disk candidate HD 32297

    Full text link
    Near-infrared imaging with the Hubble Space Telescope recently revealed a circumstellar dust disk around the A star HD 32297. Dust scattered light is detected as far as 400 AU radius and the linear morphology is consistent with a disk ~10 degrees away from an edge-on orientation. Here we present the first optical images that show the dust scattered light morphology from 560 to 1680 AU radius. The position angle of the putative disk midplane diverges by 31 degrees and the color of dust scattering is most likely blue. We associate HD 32297 with a wall of interstellar gas and the enigmatic region south of the Taurus molecular cloud. We propose that the extreme asymmetries and blue disk color originate from a collision with a clump of interstellar material as HD 32297 moves southward, and discuss evidence consistent with an age of 30 Myr or younger.Comment: 5 pages; Accepted for publication in ApJ Letter

    Nuclear collisions at the Future Circular Collider

    Full text link
    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.Comment: 4 pages, 5 figures, proceedings of Quark Matter 201
    corecore