627 research outputs found

    Stochastic Variability of Luminous Blue Variables

    Full text link
    Using the archives of the American Association of Variable Stars Observers and our own data, we analyse the long-term variability of several well-studied Luminous Blue Variables (LBVs) aiming on a general picture of stochastic variability of these objects. The power density spectra of all the selected objects may be generally described by a single power law contaminated by observational noise at higher frequencies. The slopes of the power-law component are close to p=2 (where PDS ~ f^{-p}, and f is frequency) for strongly variable flaring objects like AG Car and significantly smaller (p~1.3) for P Cyg where brightness variation amplitude is <~ 1 mag and dominated by slow low-amplitude variability. The slope holds for about two orders of magnitude in the frequency domain, though peaks and curvatures are present at f ~ 10^{-2}.. 10^{-3} d^{-1}. We show that pseudo-photosphere approach to variability may explain the power-law shape of the variability spectrum at higher frequencies. However, the observed spectra are actually rather "red" than "brown": flux variations are correlated up to tens of years that is much longer than the characteristic refreshment time scales of the pseudo-photosphere. We propose that several stochastic noise components produce the power spectra of LBV stars.Comment: 21 pages, 4 figures, 4 tables; accepted by New Astronom

    Accretion onto the Companion of Eta Carinae During the Spectroscopic Event: III. the He II 4686 Line

    Get PDF
    We continue to explore the accretion model of the massive binary system eta Carinae by studying the anomalously high He II 4686 line. The line appears just before periastron and disappears immediately thereafter. Based on the He II 4686 line emission from O-stars and their modeling in the literature, we postulate that the He II 4686 line comes from the acceleration zone of the secondary stellar wind. We attribute the large increase in the line intensity to a slight increase in the density of the secondary stellar wind in its acceleration zone. The increase in density could be due to the ionization and subsequent deceleration of the wind by the enhanced X-ray emission arising from the shocked secondary wind further downstream or to accretion of the primary stellar wind. Accretion around the secondary equatorial plane gives rise to collimation of the secondary wind, which increases its density, hence enhancing the He II 4686 emission line. In contrast with previous explanations, the presently proposed model does not require a prohibitively high X-ray flux to directly photoionize the He.Comment: ApJ, in pres

    On the photometric variability of blue supergiants in NGC 300 and its impact on the Flux-weighted Gravity-Luminosity Relationship

    Full text link
    We present a study of the photometric variability of spectroscopically confirmed supergiants in NGC 300, comprising 28 epochs extending over a period of five months. We find 15 clearly photometrically variable blue supergiants in a sample of nearly 70 such stars, showing maximum light amplitudes ranging from 0.08 to 0.23 magnitudes in the V band, and one variable red supergiant. We show their light curves, and determine semi-periods for two A2 Ia stars. Assuming that the observed changes correspond to similar variations in the bolometric luminosity, we test for the influence of this variability on the Flux-weighted Gravity--Luminosity Relationship and find a negligible effect, showing that the calibration of this relationship, which has the potential to measure extragalactic distances at the Cepheid accuracy level, is not affected by the stellar photometric variability in any significant way.Comment: 9 pages, 3 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    The cavity magnetron: not just a british invention

    Get PDF
    It is a common belief by many people that the resonant-cavity magnetron was invented in February 1940 by Randall and Boot from Birmingham University. In reality, this is not the full story. Rather, it is a point of view mostly advocated by the winners of the Second World War, who gained a great benefi t from this microwave power tube (thanks to a two-orders-of-magnitude increase of power) in the Battle of the Atlantic, in night bombing until the fi nal collapse of the German Reich, and in many other operations. This paper discusses the contributions by other nations, mainly France, but also Germany, Japan, The Netherlands, the Czech Republic, the USSR, and even more, to the cavity magnetron and to its root

    Gaze-contingent flicker pupil perimetry detects scotomas in patients with cerebral visual impairments or glaucoma

    Get PDF
    The pupillary light reflex is weaker for stimuli presented inside as compared to outside absolute scotomas. Pupillograph perimetry could thus be an objective measure of impaired visual processing. However, the diagnostic accuracy in detecting scotomas has remained unclear. We quantitatively investigated the accuracy of a novel form of pupil perimetry. The new perimetry method, termed gaze-contingent flicker pupil perimetry, consists of the repetitive on, and off flickering of a bright disk (2 hz; 320 cd/m; 4° diameter) on a gray background (160 cd/m) for 4 seconds per stimulus location. The disk evokes continuous pupil oscillations at the same rate as its flicker frequency, and the oscillatory power of the pupil reflects visual sensitivity. We monocularly presented the disk at a total of 80 locations in the central visual field (max. 15°). The location of the flickering disk moved along with gaze to reduce confounds of eye movements (gaze-contingent paradigm). The test lasted ~5 min per eye and was performed on 7 patients with cerebral visual impairment (CVI), 8 patients with primary open angle glaucoma (age &gt;45), and 14 healthy, age/gender-matched controls. For all patients, pupil oscillation power (FFT based response amplitude to flicker) was significantly weaker when the flickering disk was presented in the impaired as compared to the intact visual field (CVI: 12%, AUC = 0.73; glaucoma: 9%, AUC = 0.63). Differences in power values between impaired and intact visual fields of patients were larger than differences in power values at corresponding locations in the visual fields of the healthy control group (CVI: AUC = 0.95; glaucoma: AUC = 0.87). Pupil sensitivity maps highlighted large field scotomas and indicated the type of visual field defect (VFD) as initially diagnosed with standard automated perimetry (SAP) fairly accurately in CVI patients but less accurately in glaucoma patients. We provide the first quantitative and objective evidence of flicker pupil perimetry's potential in detecting CVI-and glaucoma-induced VFDs. Gaze-contingent flicker pupil perimetry is a useful form of objective perimetry and results suggest it can be used to assess large VFDs with young CVI patients whom are unable to perform SAP

    On the nature of the prototype LBV AG Carinae I. Fundamental parameters during visual minimum phases and changes in the bolometric luminosity during the S-Dor cycle

    Full text link
    We present a detailed spectroscopic analysis of the luminous blue variable AG Carinae during the last two visual minimum phases of its S-Dor cycle (1985-1990 and 2000-2003). The analysis reveals an overabundance of He, N, and Na, and a depletion of H, C, and O, on the surface of AG Car, indicating the presence of CNO-processed material. Furthermore, the ratio N/O is higher on the stellar surface than in the nebula. We found that the minimum phases of AG Car are not equal to each other, since we derived a noticeable difference between the maximum effective temperature achieved during 1985-1990 (22,800 K) and 2000-2001 (17,000 K). While the wind terminal velocity was 300 km/s in 1985-1990, it was as low as 105 km/s in 2001. The mass-loss rate, however, was lower from 1985-1990 (1.5 x 10^(-5) Msun/yr) than from 2000-2001 (3.7 x 10^(-5) Msun/yr). We found that the wind of AG Car is significantly clumped (f=0.10 - 0.25) and that clumps must be formed deep in the wind. We derived a bolometric luminosity of 1.5 x 10^6 Lsun during both minimum phases which, contrary to the common assumption, decreases to 1.0 x 10^6 Lsun as the star moves towards maximum flux in the V band. Assuming that the decrease in the bolometric luminosity of AG Car is due to the energy used to expand the outer layers of the star (Lamers 1995), we found that the expanding layers contain roughly 0.6 - 2 Msun. Such an amount of mass is an order of magnitude lower than the nebular mass around AG Car, but is comparable to the nebular mass found around lower-luminosity LBVs and to that of the Little Homunculus of Eta Car. If such a large amount of mass is indeed involved in the S Dor-type variability, we speculate that such instability could be a failed Giant Eruption, with several solar masses never becoming unbound from the star.(abridged)Comment: 22 pages, 13 figures, ApJ in press. A high-resolution PDF version is also available at http://www.mpifr-bonn.mpg.de/staff/jgroh/agcar.htm
    • 

    corecore