129 research outputs found

    PIGO deficiency: palmoplantar keratoderma and novel mutations.

    Get PDF
    Background Several genetic defects have been identified in the glycosylphosphatidylinositol (GPI) anchor synthesis, including mutations in PIGO encoding phosphatidylinositol glycan anchor biosynthesis class O protein. These defects constitute a subgroup of the congenital disorders of glycosylation (CDG). Seven patients from five families have been reported carrying variants in PIGO that cause an autosomal recessive syndrome characterised by dysmorphism, psychomotor disability, epilepsy and hyperphosphatasemia. Methods Whole exome sequencing was performed in a boy with dysmorphism, psychomotor disability, epilepsy, palmoplantar keratoderma, hyperphosphatasemia and platelet dysfunction without a clinical bleeding phenotype. Results Two novel variants in PIGO were detected. The missense variant encoding p. His871Pro was inherited from the boy’s father while the frameshift variant encoding p. Arg604ProfsTer40 was maternally inherited. Conclusion A boy with two novel PIGO variants is reported. The skin phenotype and platelet dysfunction in this patient have not been described in previously reported patients with PIGO deficiency but it is of course uncertain whether these are caused by this disorder. The literature on PIGO deficiency is reviewed

    Asymétrie d’information et marchés financiers : une synthèse de la littérature récente

    Get PDF
    Cet article est une synthèse des recherches récentes en matière d’asymétrie d’informations sur les marchés financiers. L’impact de différentes hypothèses sur l’existence et l’efficience informationnelle des équilibres est étudié. Le cas de la concurrence parfaite est d’abord analysé (Grossman et Stiglitz, 1980). Puis la concurrence imparfaite est analysée. On distingue deux cas, selon que le bruit qui empêche le prix d’être parfaitement révélateur provient d’une offre exogène (KyIe, 1985, 1989), ou d’une dotation aléatoire des agents informés (Glosten, 1989; Bhattacharya et Spiegel, 1990; Bossaerts et Hughson, 1991). Dans le premier cas, l’équilibre existe toujours. Dans le second cas, il n’existe que si le bruit est assez élevé ou si le support de sa distribution est borné.The impact of different hypotheses on the existence and informativeness of rational expectations equilibria is analyzed within a simple synthetic model. The case of perfect competition is first analyzed (Grossman and Stiglitz, 1980). Second imperfect competition with exogenous noise trading is studied (KyIe 1985, 1989). Informational efficiency is lower than in the previous case, because of the strategic behaviour of the insider. Third, imperfect competition without noise trader, but with unknown random endowments of the informed agent is analyzed (Glosten, 1989; Bhattacharya and Spiegel, 1990; Bossaerts and Hughson, 1991). In contrast with the previous case, equilibrium exists only if there is enough noise

    Sphingolipid dysregulation due to lack of functional KDSR impairs proplatelet formation causing thrombocytopenia.

    Get PDF
    Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation

    Value of DNA testing in the diagnosis of sickle-cell anemia in childhood in an environment with a high prevalence of other causes of anemia.

    Full text link
    peer reviewed[en] BACKGROUND: Sickle-cell anemia (SCA) is the most common genetic disease worldwide caused by a single mutation in the gene HBB. DNA testing can help to clarify the diagnosis when Hb electrophoresis is inconclusive. We evaluated the usefulness and feasibility of DNA-based diagnosis of SCA in rural Central Africa. METHODS: This is a cross-sectional study conducted from November 2016 to end October 2017 in the Hôpital Saint Luc de Kisantu, located 120 km from Kinshasa. This hospital offers the management of SCA patients, mainly identified using the Sickling test (Emmel test) combined with clinical features. We included patients aged 6 months to 18 years locally diagnosed as SCA, and we collected clinical and hematological data. All patients were offered Hb electrophoresis and DNA testing at the Center for Human Genetics of the University of Kinshasa. RESULTS: This study included 160 patients. Hemoglobin capillary electrophoresis suggested that 136 (85%) were homozygote SS, 13 (8.1%) were heterozygote (AS), and 11 (6.9%) were homozygote normal (AA). DNA testing confirmed these electrophoresis findings, with the exception of four patients, two AS in electrophoresis were found SS due to recent transfusion, and two SS in electrophoresis were found AS because they have compound heterozygous form S/β°-thalassemia. The diagnosis of SCA was therefore wrongly ascertained with Emmel test in 15% of patients. CONCLUSION: This study reveals a high proportion of false-positive SCA diagnoses in a rural environment in Central Africa. This underlines the importance of DNA testing in conjunction with Hb electrophoresis

    A gain-of-function variant in <i>DIAPH1 </i>causes dominant macrothrombocytopenia and hearing loss

    Get PDF
    Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MK). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping and similarity regression. We describe two unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 p.R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was associated with reduced proplatelet formation from cultured MKs, cell clustering and abnormal cortical filamentous actin. Similarly, in platelets there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Over-expression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insights into the autoregulation of DIAPH1 activity

    A dominant gain-of-function mutation in universal tyrosine kinase <i>SRC </i>causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies

    Get PDF
    The Src family kinase (SFK)member SRC is amajor target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, whichwe confirmedwith in vitro studies showing increased SRC kinase activity and enhanced Tyr419 phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patientswith myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of a-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC formMKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC- positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets andMKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors. © 2016 by the American Association for the Advancement of Science; all rights reserved

    Transcriptional diversity during lineage commitment of human blood progenitors.

    Get PDF
    Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.The work described in this article was primarily supported by the European Commission Seventh Framework Program through the BLUEPRINT grant with code HEALTH-F5-2011-282510 (D.H., F.B., G.C., J.H.A.M., K.D., L.C., M.F., S.C., S.F., and S.P.G.). Research in the Ouwehand laboratory is further supported by program grants from the National Institute for Health Research (NIHR, www.nihr.ac.uk; to A.A., M.K., P.P., S.B.G.J., S.N., and W.H.O.) and the British Heart Foundation under nos. RP-PG-0310-1002 and RG/09/12/28096 (www.bhf.org.uk; to A.R. and W.J.A.). K.F. and M.K. were supported by Marie Curie funding from the NETSIM FP7 program funded by the European Commission. The laboratory receives funding from the NHS Blood and Transplant for facilities. The Cambridge BioResource (www.cambridgebioresource.org.uk), the Cell Phenotyping Hub, and the Cambridge Translational GenOmics laboratory (www.catgo.org.uk) are supported by an NIHR grant to the Cambridge NIHR Biomedical Research Centre (BRC). The BRIDGE-Bleeding and Platelet Disorders Consortium is supported by the NIHR BioResource—Rare Diseases (http://bioresource.nihr.ac.uk/; to E.T., N.F., and Whole Exome Sequencing effort). Research in the Soranzo laboratory (L.V., N.S., and S. Watt) is further supported by the Wellcome Trust (Grant Codes WT098051 and WT091310) and the EU FP7 EPIGENESYS initiative (Grant Code 257082). Research in the Cvejic laboratory (A. Cvejic and C.L.) is funded by the Cancer Research UK under grant no. C45041/A14953. S.J.S. is funded by NIHR. M.E.F. is supported by a British Heart Foundation Clinical Research Training Fellowship, no. FS/12/27/29405. E.B.-M. is supported by a Wellcome Trust grant, no. 084183/Z/07/Z. Research in the Laffan laboratory is supported by Imperial College BRC. F.A.C., C.L., and S. Westbury are supported by Medical Research Council Clinical Training Fellowships, and T.B. by a British Society of Haematology/NHS Blood and Transplant grant. R.J.R. is a Principal Research Fellow of the Wellcome Trust, grant no. 082961/Z/07/Z. Research in the Flicek laboratory is also supported by the Wellcome Trust (grant no. 095908) and EMBL. Research in the Bertone laboratory is supported by EMBL. K.F. and C.v.G. are supported by FWO-Vlaanderen through grant G.0B17.13N. P.F. is a compensated member of the Omicia Inc. Scientific Advisory Board. This study made use of data generated by the UK10K Consortium, derived from samples from the Cohorts arm of the project.This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on 26/9/14 in volume 345, number 6204, DOI: 10.1126/science.1251033. This version will be under embargo until the 26th of March 2015

    Expanded repertoire of RASGRP2 variants responsible for platelet dysfunction and severe bleeding.

    Get PDF
    Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbβ3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation
    • …
    corecore