12 research outputs found

    Blocking Tumor-Educated MSC Paracrine Activity Halts Osteosarcoma Progression

    Get PDF
    Purpose: Human osteosarcoma is a genetically heterogeneous bone malignancy with poor prognosis despite the employment of aggressive chemotherapy regimens. Because druggable driver mutations have not been established, dissecting the interactions between osteosarcoma cells and supporting stroma may provide insights into novel therapeutic targets.Experimental Design: By using a bioluminescent orthotopic xenograft mouse model of osteosarcoma, we evaluated the effect of tumor extracellular vesicle (EV)-educated mesenchymal stem cells (TEMSC) on osteosarcoma progression. Characterization and functional studies were designed to assess the mechanisms underlying MSC education. Independent series of tissue specimens were analyzed to corroborate the preclinical findings, and the composition of patient serum EVs was analyzed after isolation with size-exclusion chromatography.Results: We show that EVs secreted by highly malignant osteosarcoma cells selectively incorporate a membrane-associated form of TGF\u3b2, which induces proinflammatory IL6 production by MSCs. TEMSCs promote tumor growth, accompanied with intratumor STAT3 activation and lung metastasis formation, which was not observed with control MSCs. Importantly, intravenous administration of the anti-IL6 receptor antibody tocilizumab abrogated the tumor-promoting effects of TEMSCs. RNA-seq analysis of human osteosarcoma tissues revealed a distinct TGF\u3b2-induced prometastatic gene signature. Tissue microarray immunostaining indicated active STAT3 signaling in human osteosarcoma, consistent with the observations in TEMSC-treated mice. Finally, we isolated pure populations of EVs from serum and demonstrated that circulating levels of EV-associated TGF\u3b2 are increased in osteosarcoma patients.Conclusions: Collectively, our findings suggest that TEMSCs promote osteosarcoma progression and provide the basis for testing IL6- and TGF\u3b2-blocking agents as new therapeutic options for osteosarcoma patients. Clin Cancer Res; 23(14); 3721-33. \ua92017 AACR

    Packaging RNA drugs into extracellular vesicles

    No full text
    The therapeutic dose of small interfering RNA can be reduced by endogenously expressing and packaging the RNA into extracellular vesicles through its integration with the backbone of a highly enriched pre-microRNA

    NORMSEQ: a tool for evaluation, selection and visualization of RNA-Seq normalization methods

    No full text
    RNA-sequencing has become one of the most used high-throughput approaches to gain knowledge about the expression of all different RNA subpopulations. However, technical artifacts, either introduced during library preparation and/or data analysis, can influence the detected RNA expression levels. A critical step, especially in large and low input datasets or studies, is data normalization, which aims at eliminating the variability in data that is not related to biology. Many normalization methods have been developed, each of them relying on different assumptions, making the selection of the appropriate normalization strategy key to preserve biological information. To address this, we developed NormSeq, a free web-server tool to systematically assess the performance of normalization methods in a given dataset. A key feature of NormSeq is the implementation of information gain to guide the selection of the best normalization method, which is crucial to eliminate or at least reduce non-biological variability. Altogether, NormSeq provides an easy-to-use platform to explore different aspects of gene expression data with a special focus on data normalization to help researchers, even without bioinformatics expertise, to obtain reliable biological inference from their data. NormSeq is freely available at: https://arn.ugr.es/normSeq

    Reassessment of miRNA variant (isomiRs) composition by small RNA sequencing

    No full text
    IsomiRs, sequence variants of mature microRNAs, are usually detected and quantified using high-throughput sequencing. Many examples of their biological relevance have been reported, but sequencing artifacts identified as artificial variants might bias biological inference and therefore need to be ideally avoided. We conducted a comprehensive evaluation of 10 different small RNA sequencing protocols, exploring both a theoretically isomiR-free pool of synthetic miRNAs and HEK293T cells. We calculated that, with the exception of two protocols, less than 5% of miRNA reads can be attributed to library preparation artifacts. Randomized-end adapter protocols showed superior accuracy, with 40% of true biological isomiRs. Nevertheless, we demonstrate concordance across protocols for selected miRNAs in non-templated uridyl additions. Notably, NTA-U calling and isomiR target prediction can be inaccurate when using protocols with poor single-nucleotide resolution. Our results highlight the relevance of protocol choice for biological isomiRs detection and annotation, which has key potential implications for biomedical applications

    Extracellular vesicle miRNA predict FDG-PET status in patients with classical Hodgkin Lymphoma

    Get PDF
    KWF Kankerbestrijding, Grant/AwardNumber: KWF-5510; Cancer Center Amsterdam Foundation, Grant/AwardNumber: CCA-2013; The Hodgkin Lymphoma MRD Foundation; Technology Foundation STW, Grant/AwardNumber: CANCER-ID ProjectMinimally-invasive tools to assess tumour presence and burden may improve clinical management. FDG-PET (metabolic) imaging is the current gold standard for interim response assessment in patients with classical Hodgkin Lymphoma (cHL), but this technique cannot be repeated frequently. Here we show that microRNAs (miRNA) associated with tumour-secreted extracellular vesicles (EVs) in the circulation of cHL patients may improve response assessment. Small RNA sequencing and qRT-PCR reveal that the relative abundance of cHL-expressed miRNAs, miR-127-3p, miR-155- 5p, miR-21-5p, miR-24-3p and let-7a-5p is up to hundred-fold increased in plasma EVs of cHL patients pre-treatmentwhen compared to completemetabolic responders (CMR). Notably, in partial responders (PR) or treatment-refractory cases (n = 10) the EV-miRNA levels remain elevated. In comparison, tumour specific copy number variations (CNV) were detected in cell-free DNA of 8 out of 10 newly diagnosed cHL patients but not in patients with PR. Combining EV-miR-127-3p and/or EV-let- 7a-5p levels, with serum TARC (a validated protein cHL biomarker), increases the accuracy for predicting PET-status (n = 129) to an area under the curve of 0.93 (CI: 0.87-0.99), 93.5% sensitivity, 83.8/85.0% specificity and a negative predictive value of 96%. Thus the level of tumour-associated miRNAs in plasma EVs is predictive of metabolic tumour activity in cHL patients. Our findings suggest that plasma EV-miRNA are useful for detection of small residual lesions and may be applied as serial response prediction tool.KWF Kankerbestrijding KWF-5510Cancer Center Amsterdam Foundation CCA-2013Hodgkin Lymphoma MRD FoundationTechnologiestichting ST

    Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients

    Get PDF
    BACKGROUND. Cell-free circulating nucleic acids, including 22-nt microRNAs (miRNAs), represent noninvasive biomarkers for treatment response monitoring of cancer patients. While the majority of plasma miRNA is bound to proteins, a smaller, less well-characterized pool is associated with extracellular vesicles (EVs). Here, we addressed whether EV-associated miRNAs reflect metabolic disease in classical Hodgkin lymphoma (cHL) patients. METHODS. With standardized size-exclusion chromatography (SEC), we isolated EV-associated extracellular RNA (exRNA) fractions and protein-bound miRNA from plasma of cHL patients and healthy subjects. We performed a comprehensive small RNA sequencing analysis and validation by TaqMan qRT-PCR for candidate discovery. Fluorodeoxyglucose-PET (FDG-PET) status before treatment, directly after treatment, and during long-term follow-up was compared directly with EV miRNA levels. RESULTS. The plasma EV miRNA repertoire was more extensive compared with protein-bound miRNA that was heavily dominated by a few abundant miRNA species and was less informative of disease status. Purified EV fractions of untreated cHL patients and tumor EVs had enriched levels of miR24-3p, miR127-3p, miR21-5p, miR155-5p, and let7a-5p compared with EV fractions from healthy subjects and disease controls. Serial monitoring of EV miRNA levels in patients before treatment, directly after treatment, and during long-term follow-up revealed robust, stable decreases in miRNA levels matching a complete metabolic response, as observed with FDG-PET. Importantly, EV miRNA levels rose again in relapse patients. CONCLUSION. We conclude that cHL-related miRNA levels in circulating EVs reflect the presence of vital tumor tissue and are suitable for therapy response and relapse monitoring in individual cHL patients. FUNDING. Cancer Center Amsterdam Foundation (CCA-2013), Dutch Cancer Society (KWF-5510), Technology Foundation STW (STW Perspectief CANCER-ID)

    Sensing of latent EBV infection through exosomal transfer of 5'pppRNA

    No full text
    Complex interactions between DNA herpesviruses and host factors determine the establishment of a life-long asymptomatic latent infection. The lymphotropic Epstein-Barr virus (EBV) seems to avoid recognition by innate sensors despite massive transcription of immunostimulatory small RNAs (EBV-EBERs). Here we demonstrate that in latently infected B cells, EBER1 transcripts interact with the lupus antigen (La) ribonucleoprotein, avoiding cytoplasmic RNA sensors. However, in coculture experiments we observed that latent-infected cells trigger antiviral immunity in dendritic cells (DCs) through selective release and transfer of RNA via exosomes. In ex vivo tonsillar cultures, we observed that EBER1-loaded exosomes are preferentially captured and internalized by human plasmacytoid DCs (pDCs) that express the TIM1 phosphatidylserine receptor, a known viral- and exosomal target. Using an EBER-deficient EBV strain, enzymatic removal of 5'ppp, in vitro transcripts, and coculture experiments, we established that 5'pppEBER1 transfer via exosomes drives antiviral immunity in nonpermissive DCs. Lupus erythematosus patients suffer from elevated EBV load and activated antiviral immunity, in particular in skin lesions that are infiltrated with pDCs. We detected high levels of EBER1 RNA in such skin lesions, as well as EBV-microRNAs, but no intact EBV-DNA, linking non-cell-autonomous EBER1 presence with skin inflammation in predisposed individuals. Collectively, our studies indicate that virus-modified exosomes have a physiological role in the host-pathogen stand-off and may promote inflammatory diseas
    corecore