29 research outputs found

    Cognitive and Mental Health Predictors of Withdrawal Severity During an Active Attempt to Cut Down Cannabis Use

    Get PDF
    A milestone in cannabis research is the establishment of a clinically relevant cannabis withdrawal syndrome, yet little is known about the underlying mechanisms. We investigated the predictive role of mental health and cognitive factors in withdrawal severity during an active attempt to cut down, relative to uninterrupted cannabis use. Ninety heavy cannabis users were randomly assigned to an experimental or control group. The experimental group was asked to cut down substance use for 1 week. Past week substance use, substance use-related problems, depressive symptoms, cravings, and cognitive control were assessed at baseline. Past week substance use and withdrawal severity were assessed at follow-up. The experimental group reduced their cannabis use more and experienced more withdrawal than the control group. Hierarchical regression analysis per predictor indicated that cannabis use-related problems, depressive symptoms, and cannabis craving, but not cognitive control, predicted stronger withdrawal. Craving uniquely predicted withdrawal in the experimental group. A combined hierarchical regression indicated that only depressive symptoms and cannabis use-related problems uniquely predicted withdrawal across groups. These results suggest that depressive symptoms and cannabis use-related problems are generally indicative of cannabis withdrawal severity, whereas craving specifically predicts cannabis withdrawal during an active attempt to cut-down cannabis use

    Heritability of aggression following social evaluation in middle childhood: An fMRI study.

    Get PDF
    Middle childhood marks an important phase for developing and maintaining social relations. At the same time, this phase is marked by a gap in our knowledge of the genetic and environmental influences on brain responses to social feedback and their relation to behavioral aggression. In a large developmental twin sample (509 7- to 9-year-olds), the heritability and neural underpinnings of behavioral aggression following social evaluation were investigated, using the Social Network Aggression Task (SNAT). Participants viewed pictures of peers that gave positive, neutral, or negative feedback to the participant’s profile. Next, participants could blast a loud noise toward the peer as an index of aggression. Genetic modeling revealed that aggression following negative feedback was influenced by both genetics and environmental (shared as well as unique environment). On a neural level (n 5 385), the anterior insula and anterior cingulate cortex gyrus (ACCg) responded to both positive and negative feedback, suggesting they signal for social salience cues. The medial prefrontal cortex (mPFC) and inferior frontal gyrus (IFG) were specifically activated during negative feedback, whereas positive feedback resulted in increased activation in caudate, supplementary motor cortex (SMA), and dorsolateral prefrontal cortex (DLPFC). Decreased SMA and DLPFC activation during negative feedback was associated with more aggressive behavior aft

    Observational reinforcement learning in children and young adults

    Get PDF
    Observational learning is essential for the acquisition of new behavior in educational practices and daily life and serves as an important mechanism for human cognitive and social-emotional development. However, we know little about its underlying neurocomputational mechanisms from a developmental perspective. In this study we used model-based fMRI to investigate differences in observational learning and individual learning between children and younger adults. Prediction errors (PE), the difference between experienced and predicted outcomes, related positively to striatal and ventral medial prefrontal cortex activation during individual learning and showed no age-related differences. PE-related activation during observational learning was more pronounced when outcomes were worse than predicted. Particularly, negative PE-coding in the dorsal medial prefrontal cortex was stronger in adults compared to children and was associated with improved observational learning in children and adults. The current findings pave the way to better understand observational learning challenges across development and educational settings

    Cognitive and Mental Health Predictors of Withdrawal Severity During an Active Attempt to Cut Down Cannabis Use

    Get PDF
    A milestone in cannabis research is the establishment of a clinically relevant cannabis withdrawal syndrome, yet little is known about the underlying mechanisms. We investigated the predictive role of mental health and cognitive factors in withdrawal severity during an active attempt to cut down, relative to uninterrupted cannabis use. Ninety heavy cannabis users were randomly assigned to an experimental or control group. The experimental group was asked to cut down substance use for 1 week. Past week substance use, substance use-related problems, depressive symptoms, cravings, and cognitive control were assessed at baseline. Past week substance use and withdrawal severity were assessed at follow-up. The experimental group reduced their cannabis use more and experienced more withdrawal than the control group. Hierarchical regression analysis per predictor indicated that cannabis use-related problems, depressive symptoms, and cannabis craving, but not cognitive control, predicted stronger withdrawal. Craving uniquely predicted withdrawal in the experimental group. A combined hierarchical regression indicated that only depressive symptoms and cannabis use-related problems uniquely predicted withdrawal across groups. These results suggest that depressive symptoms and cannabis use-related problems are generally indicative of cannabis withdrawal severity, whereas craving specifically predicts cannabis withdrawal during an active attempt to cut-down cannabis use

    Developmental maturation of the precuneus as a functional core of the default mode network

    Get PDF
    Efforts to map the functional architecture of the developing human brain have shown that connectivity between and within functional neural networks changes from childhood to adulthood. Although prior work has established that the adult precuneus distinctively modifies its connectivity during task versus rest states (Utevsky, Smith, & Huettel, 2014), it remains unknown how these connectivity patterns emerge over development. Here, we use fMRI data collected at two longitudinal time points from over 250 participants between the ages of 8 and 26 years engaging in two cognitive tasks and a resting-state scan. By applying independent component analysis to both task and rest data, we identified three canonical networks of interest—the rest-based default mode network and the task-based left and right frontoparietal networks (LFPN and RFPN, respectively)—which we explored for developmental changes using dual regression analyses. We found systematic state-dependent functional connectivity in the precuneus, such that engaging in a task (compared with rest) resulted in greater precuneus–LFPN and precuneus–RFPN connectivity, whereas being at rest (compared with task) resulted in greater precuneus–default mode network connectivity. These cross-sectional results replicated across both tasks and at both developmental time points. Finally, we used longitudinal mixed models to show that the degree to which precuneus distinguishes between task and rest states increases with age, due to age-related increasing segregation between precuneus and LFPN at rest. Our results highlight the distinct role of the precuneus in tracking processing state, in a manner that is both present throughout and strengthened across development

    Dealing With Uncertainty: Testing Risk- and Ambiguity-Attitude Across Adolescence

    Get PDF
    Attitudes to risk (known probabilities) and attitudes to ambiguity (unknown probabilities) are separate constructs that influence decision making, but their development across adolescence remains elusive. We administered a choice task to a wide adolescent age-range (N = 157, 10–25 years) to disentangle risk- and ambiguity-attitudes using a model-based approach. Additionally, this task was played in a social context, presenting choices from a high risk-taking peer. We observed age-related changes in ambiguity-attitude, but not risk-attitude. Also, ambiguity-aversion was negatively related to real-life risk taking. Finally, the social context influenced only risk-attitudes. These results highlight the importance of disentangling risk- and ambiguity-attitudes in adolescent risk taking

    Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence

    Get PDF
    Although many neuroimaging studies have investigated adolescent risk taking, few studies have dissociated between decision-making under risk (known probabilities) and ambiguity (unknown probabilities). Furthermore, which brain regions are sensitive to individual differences in task-related and self-reported risk taking remains elusive. We presented 198 adolescents (11-24 years, an age-range in which individual differences in risk taking are prominent) with an fMRI paradigm that separated decision-making (choosing to gamble or not) and reward outcome processing (gains, no gains) under risky and ambiguous conditions, and related this to task-related and self-reported risk taking. We observed distinct neural mechanisms underlying risky and ambiguous gambling, with risk more prominently associated with activation in parietal cortex, and ambiguity more prominently with dorsolateral prefrontal cortex (PFC), as well as medial PFC during outcome processing. Individual differences in task-related risk taking were positively associated with ventral striatum activation in the decision phase, specifically for risk, and negatively associated with insula and dorsomedial PFC activation, specifically for ambiguity. Moreover, dorsolateral PFC activation in the outcome phase seemed a prominent marker for individual differences in task-related risk taking under ambiguity as well as self-reported daily-life risk taking, in which greater risk taking was associated with reduced activation in dorsolateral PFC. Together, this study demonstrates the importance of considering multiple risk-taking measures, and contextual moderators, in understanding the neural mechanisms underlying adolescent risk taking

    Frontostriatal white matter integrity predicts development of delay of gratification : A longitudinal study

    No full text
    The ability to delay gratification increases considerably across development. Here, we test the hypothesis that this impulse control capacity is driven by increased maturation of frontostriatal circuitry using a fiber-tracking approach combined with longitudinal imaging. In total, 192 healthy volunteers between 8 and 26 years underwent diffusion tensor imaging scanning and completed a delaydiscounting task twice, separated by a 2-year interval. We investigated dynamic associations between frontostriatal white matter (WM) integrity and delay of gratification skills. Moreover, we examined the predictive value of frontostriatalWMintegrity for future delay of gratification skills. Results showed that delay discounting increases with age in a quadratic fashion, with greatest patience during late adolescence. Data also indicated nonlinear development of frontostriatalWM,with relative fast development during childhood and early adulthood and—on average—little change during mid-adolescence. Furthermore, the positive association between age and delay discounting was further increased in individuals with higher WM integrity of the frontostriatal tracts. Predictive analysis showed that frontostriatal WM development explained unique variance in current and future delay of gratification skills. This study adds to a descriptive relation betweenWMintegrity and delay of gratification by showing that maturation of frontostriatal connectivity predicts changes in delay of gratification skills. These findings have implications for studies examining deviances in impulse control by showing that the developmental path between striatum and prefrontal cortex may be an important predictor for when development goes astray
    corecore