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Developmental Maturation of the Precuneus as a
Functional Core of the Default Mode Network

Rosa Li1, Amanda V. Utevsky1, Scott A. Huettel1, Barbara R. Braams2, Sabine Peters3,4,
Eveline A. Crone3,4, and Anna C. K. van Duijvenvoorde3,4

Abstract

■ Efforts to map the functional architecture of the developing
human brain have shown that connectivity between and within
functional neural networks changes from childhood to adulthood.
Although prior work has established that the adult precuneus
distinctively modifies its connectivity during task versus rest states
(Utevsky, Smith, & Huettel, 2014), it remains unknown how these
connectivity patterns emerge over development. Here, we use
fMRI data collected at two longitudinal time points from over
250 participants between the ages of 8 and 26 years engaging in
two cognitive tasks and a resting-state scan. By applying inde-
pendent component analysis to both task and rest data, we iden-
tified three canonical networks of interest—the rest-based default
mode network and the task-based left and right frontoparietal
networks (LFPN and RFPN, respectively)—which we explored

for developmental changes using dual regression analyses. We
found systematic state-dependent functional connectivity in the
precuneus, such that engaging in a task (compared with rest) re-
sulted in greater precuneus–LFPN and precuneus–RFPN connec-
tivity, whereas being at rest (compared with task) resulted in
greater precuneus–default mode network connectivity. These
cross-sectional results replicated across both tasks and at both de-
velopmental time points. Finally, we used longitudinal mixed
models to show that the degree to which precuneus distinguishes
between task and rest states increases with age, due to age-related
increasing segregation between precuneus and LFPN at rest. Our
results highlight the distinct role of the precuneus in tracking pro-
cessing state, in a manner that is both present throughout and
strengthened across development. ■

INTRODUCTION

The human brain exhibits distinct patterns of functional
connectivity between disparate brain regions, even when
at rest. These patterns are so reliably evoked across stud-
ies and participants that they can be described as a set of
canonical neural networks reflecting the intrinsic func-
tional organization of the human brain (van den Heuvel
& Hulshoff Pol, 2010; Smith et al., 2009). The default
mode network (DMN), composed of the precuneus, pos-
terior cingulate cortex, medial pFC, and bilateral TPJ, is
the network most readily associated with rest states, as
its activity increases during rest and decreases during task
engagement (Raichle et al., 2001; Shulman et al., 1997).
Other networks, however, also show patterns of intrinsic
connectivity during rest, including lateralized fronto-
parietal networks (FPNs) that are more generally associ-
ated with task-positive, goal-directed attention (Vincent,
Kahn, Snyder, Raichle, & Buckner, 2008; Corbetta &
Shulman, 2002) and found to be anticorrelated with the
DMN (Fox et al., 2005).

Across the regions of the DMN, the precuneus stands
out for its distinctive role. Several studies have shown
that, despite being a component of the DMN, precuneus

activation increases during tasks such as memory retrieval
(Lundstrom, Ingvar, & Petersson, 2005; Maddock, Garrett,
& Buonocore, 2001; Fletcher et al., 1995), reward monitor-
ing (Hayden, Nair, McCoy, & Platt, 2008), and emotion
processing (Maddock, Garrett, & Buonocore, 2003; see
Cavanna & Trimble, 2006 for a review). Notably, Utevsky,
Smith, and Huettel (2014) found precuneus to be the only
neural region that both increased connectivity with DMN
at rest compared with at task and increased connectivity
with the left FPN (LFPN) at task compared with at rest.
Although greater precuneus–DMN connectivity during
rest may be expected as a result of increased within-
network connectivity, the finding of greater precuneus–
LFPN connectivity during task is more counterintuitive,
as precuneus is not part of the LFPN. These results suggest
that precuneus serves as a functional core of the DMN by
altering its network connectivity to LFPN and DMN accord-
ing to whether the brain is in a task or a rest state.
Although precuneus (and adjacent posterior cingulate

cortex) connectivity has been studied using data from
adults (Utevsky et al., 2014; Fornito, Harrison, Zalesky,
& Simons, 2012; Leech, Braga, & Sharp, 2012; Leech,
Kamourieh, Beckmann, & Sharp, 2011; Honey et al.,
2009), the role of the precuneus in mediating between
task and rest states has not yet been investigated across
development. Previous work using resting-state data has
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shown that within-network functional and structural con-
nectivity increases with age for DMN and FPNs (Baum
et al., 2017; Uddin, Supekar, Ryali, & Menon, 2011; Fair
et al., 2007, 2008) and that the DMN and FPNs become in-
creasingly segregated from each other with age (Sherman
et al., 2014), consistent with the idea that within-network
connections are strengthened and between-network
connections are weakened across development (Fair et al.,
2009). Therefore, we expected that the precuneus, as a
node of the DMN, would show developmental changes in
connectivity with DMN and FPN, reflecting change in the

degree to which this functional region mediates between
task and rest states.

Here, we used network-based connectivity analyses to
probe the role of the precuneus in a large accelerated
longitudinal sample. Over 250 participants between the
ages of 8 and 26 years completed a resting-state scan
and two cognitive task scans at two longitudinal time
points approximately 2 years apart. We used data from
the first longitudinal time point to identify rest- and
task-based networks of interest, DMN, and LFPN and
right FPN (RFPN). We then used dual regression analyses

Figure 1. Schematic diagram of analytic approach (adapted from Utevsky et al., 2014). After data were collected and preprocessed, each task data set
was paired with the corresponding rest data set for the same subgroup of participants. Data from two tasks across two developmental time points
were used, resulting in four subgroups. Each T1 subgroup of combined task and rest data were entered into a group ICA, resulting in 25 spatial network
maps for the T1 Task A + Rest data and another 25 spatial network maps for the T1 Task B + Rest data set. The network maps for each T1 task
subgroup were then entered in separate dual regression analyses for each corresponding T1 and T2 task subgroup (e.g., T1 Task A + Rest network maps
were used for a T1 Task A + Rest dual regression and a separate T2 Task A + Rest dual regression). This allowed us to quantify, for each participant,
each voxel’s connectivity with each network while controlling for the other 24 networks. Each participant’s resting-state connectivity map was then
subtracted from their task-state connectivity map, allowing us to examine within-participant connectivity differences for each of our networks of interest
(DMN, LFPN, and RFPN). The resulting task–rest difference maps were submitted to permutation-based thresholding to examine statistically significant
differences. Finally, precuneus ROI analyses were conducted by submitting task–rest connectivity differences at both time points to mixed models
including age-related parameters.
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(Nickerson, Smith, Öngür, & Beckmann, 2017; Smith
et al., 2014; Leech et al., 2011, 2012; Filippini et al.,
2009) to examine task versus rest connectivity with our
networks of interest at both longitudinal time points
and for both tasks (see Figure 1 for a schematic analysis
diagram). This design allowed us to self-replicate connec-
tivity results across two longitudinal time points and
self-replicate developmental results across two different
tasks. Our results extended previous findings in adults
(Utevsky et al., 2014) to children and adolescents while
also testing the hypothesis that the role of the precuneus
as a functional core of the DMN strengthens across
human development.

METHODS

Participants and Experimental Tasks

Data for the current study were drawn from the first two
time points of a large longitudinal imaging study
(BrainTime) that was conducted at Leiden University in
the Netherlands. At the first longitudinal time point
(T1), data were collected from 299 participants (mean
age = 14.15 years, age range = 8.01–25.95 years; 156 fe-
male). Data at the second longitudinal time point (T2)
were collected approximately 2 years later from 254 of the
original participants (mean age = 16.07 years, age range =
9.92–26.62 years; 131 female). Although previous articles
have published findings from the BrainTime study’s resting-
state data (van Duijvenvoorde, Westhoff, de Vos, Wierenga, &
Crone, 2019; Peters, Peper, van Duijvenvoorde, Braams, &
Crone, 2017; Peters, Jolles, van Duijvenvoorde, Crone, &
Peper, 2015; van Duijvenvoorde, Achterberg, Braams,
Peters, & Crone, 2015) and data from its two tasks separately
(Schreuders etal.,2018;Braams&Crone,2017a,2017b;Peters
&Crone,2017;Peters,VanderMeulen,Zanolie,&Crone,2017;
Braams, Peper, VanDerHeide, Peters,&Crone, 2016; Peters,
van Duijvenvoorde, Koolschijn, & Crone, 2016; Braams,
van Duijvenvoorde, Peper, & Crone, 2015; Braams,
Güroğlu, et al., 2014; Braams, Peters, Peper, Güroğlu, &
Crone, 2014; Peters, Braams, Raijmakers, Koolschijn, &
Crone, 2014; Peters, Koolschijn, Crone, van Duijvenvoorde,
& Raijmakers, 2014), this is the first study integrating all
of the functional task and rest data from BrainTime’s first
two longitudinal time points.

Written informed consent was obtained from adult
participants, whereas parent consent and participant
assent was obtained from minor participants under a
protocol approved by the institutional review board of
Leiden University Medical Centre. Participants were
screened for MRI contraindications. All participants
were right-handed, had no history of neurological or
psychiatric disorders, and had their anatomical scans
reviewed and cleared for incidental findings by a
radiologist.

At both longitudinal time points, participants first com-
pleted a 5.1-min resting-state scan in which they were

instructed to lie still with their eyes closed but remain
awake. Then, participants completed two runs of a feed-
back learning task, in which they learned associations
between stimuli through positive and negative feedback
(Task A; Peters, Van der Meulen, et al., 2017; Peters et al.,
2016; Peters, Braams, et al., 2014; Peters, Koolschijn,
et al., 2014), followed by two runs of a self/other reward
processing task, in which they guessed coin flip out-
comes to win money for themselves or another person
(Task B; Braams & Crone, 2017a, 2017b, Braams et al.,
2015, 2016; Braams, Güroğlu, et al., 2014; Braams,
Peters, et al., 2014). Finally, anatomical images were
obtained.
Data were split into four subgroups based on longitu-

dinal time point and task (e.g., the original T1 Task A +
Rest subgroup consisted of all participants who, at T1,
completed at least one run of Task A and the resting-state
run). Within each subgroup, data were excluded based on
data quality concerns (see Preprocessing section below) or
for task performance indicating poor task engagement
(performance less than three times the interquartile range
in the feedback learning task; failing to make a response
on >30% of trials in the reward processing task). These
exclusion criteria left a final sample of 225 participants in
the T1 Task A + Rest subgroup, 197 participants in the
T1 Task B + Rest subgroup, 198 participants in the T2
Task A + Rest subgroup, and 187 participants in the T2
Task B + Rest subgroup. See Table 1 for demographics
of each subgroup.
The final subgroups included 120 participants (67 female)

who were in all four subgroups, 158 (84 female) participants
who were in both Task A + Rest subgroups across longitu-
dinal time points, 131 (75 female) participants who were in
both Task B + Rest subgroups across longitudinal time
points, 190 (103 female) participants who were in both T1
subgroups across tasks, and 177 (89 female) participants
who were in both T2 subgroups across tasks.

Image Acquisition

Scanning was performed on a 3-T Phillips Achieva MRI sys-
tem using a standard whole-head coil. Functional scans

Table 1. Participant Demographics for Each Subgroup

Group
Final n

(n Female)
Mean Age
(years)

Age Range
(years)

T1 Task A +
Rest

225 (116) 14.58 8.01–25.95

T1 Task B +
Rest

197 (109) 14.82 8.01–25.95

T2 Task A +
Rest

198 (102) 16.58 10.02–26.62

T2 Task B +
Rest

187 (96) 16.75 10.02–26.62

1508 Journal of Cognitive Neuroscience Volume 31, Number 10



were acquired using a T2*-weighted EPI sequence (repe-
tition time [TR] = 2.2 sec, echo time [TE] = 30 msec,
descending sequential acquisition of 38 axial slices, flip
angle = 80°, field of view [FOV] = 220 × 114.7 × 220 mm3,
voxel size = 2.75 mm3). The resting-state scan consisted
of 142 volumes, each run of Task A consisted of 128–222
volumes, and each run of Task B consisted of 212 vol-
umes. All functional runs included two initial dummy
volumes to allow for signal equilibration. Experimental
images were back-projected onto a screen that was
viewed through a mirror.
Following functional scanning, a T1-weighted ana-

tomical scan (TR = 9.76 msec, TE = 4.59 msec, flip
angle = 8°, FOV = 224 × 168 × 177.3, 140 slices, voxel
size = 1.17 × 1.17 × 1.2 mm, inversion time = 1050 msec)
and a high-resolution EPI scan (TR = 2.2 sec, TE =
30 msec, 84 slices, flip angle = 80°, FOV = 220 ×
168 × 220 mm3, voxel size = 1.96 × 2 × 1.96 mm) were
obtained to facilitate coregistration and normalization of
functional data.

Preprocessing

Data were preprocessed using FSL Version 5.0.4’s (Woolrich
et al., 2009; Smith et al., 2004) FMRIB’s Expert Analysis Tool,
including motion correction by realignment to the middle
volume of each time series ( Jenkinson & Smith, 2001),
slice-time correction, removal of nonbrain tissue (Smith,
2002), spatial smoothing using a Gaussian kernel of 6 mm
FWHM, grand mean intensity normalization, and high-pass
temporal filtering (Gaussian-weighted least squares straight
line fitting with a 150-sec cutoff ). Functional scans were
first coregistered to the high-resolution EPI images, which
were in turn registered to the T1 images, which were
finally registered to the Montreal Neurological Institute
avg152 T1-weighted template using FSL’s Nonlinear
Image Registration Tool.
For quality control, we examined five partially correlated

measures of quality assurance for each run: (1) average
signal-to-fluctuation-noise ratio (Friedman, Glover, & The
FBIRN Consortium, 2006), (2) average volume-to-volume
motion, (3) maximum absolute motion, (4) percentage of
volumes with framewise displacement (FD) greater than
0.5 mm (Power, Barnes, Snyder, Schlaggar, & Petersen,
2012), and (5) percentage of outlier volumes with root-
mean-square intensity difference relative to the reference
volume (refRMS) greater than the 75th percentile plus
the value of 150% of the interquartile range of refRMS for
all volumes in the run (i.e., standard boxplot threshold for
outlier detection). Within each participant’s data for each
task, we identified the “best” of the two runs as the run
with the lowest percentage of refRMS outlier volumes
and included only that run in subsequent analyses.
Finally, within each task’s best runs and within the
resting-state data, we excluded the 95th percentile of worst
runs for each data quality metric and/or ≥3 mm of motion
and/or ≥10% poor quality volumes, whichever criteria was

strictest (see Participants and Experimental Tasks section
for final included sample sizes). This left us with one task
and one rest run per participant in each analysis subgroup
(i.e., each participant in the T1 Task A + Rest subgroup
contributed one T1 Task A run and their T1 resting-state
run to the analyses). Because each analysis subgroup drew
from the same initial participant pool but faced slightly
different percentile-based exclusion criteria, the exact
makeup of each analysis subgroup included overlapping
but nonidentical participants.

As even mild motion artifacts can distort connectivity
analyses (Power et al., 2012; Satterthwaite et al., 2012),
we implemented additional analyses to correct for mo-
tion issues. We regressed out variance tied to six motion
parameters (rotations and translations along the three
principal axes). Furthermore, for every run, we regressed
out all volumes with FD greater than 0.5 mm and all
refRMS outlier volumes. Though this is not identical to
the scrubbing procedure of Power and colleagues
(2012), it accomplishes the same goal of removing sig-
nal discontinuities and spurious effects of head motion
that cannot be accounted for by conventional motion
regression.

Independent Component Analysis

T1 data for each task + rest subgroup were run through
separate probabilistic group independent component
analysis (ICA; Beckmann & Smith, 2004). Each ICA had
two inputs per subgroup participant: one resting-state
scan and one task-based scan. Input data were first
downsampled to 3 mm isotropic resolution using a
12-parameter affine transformation implemented in
FSL’s Linear Image Registration Tool (Jenkinson & Smith,
2001) to reduce data-processing demands. Through FSL’s
Multivariate Exploratory Linear Optimized Decomposition
into Independent Components, data were voxel-wise de-
meaned and normalized, whitened, and projected into a
25-dimensional subspace (the number of selected compo-
nents was based on Utevsky et al., 2014), resulting in 25
independent components (ICs) per subsample.

From each T1 task + rest subgroup’s ICA output, we
identified the ICs corresponding to our three networks of
interest (DMN, RFPN, and LFPN) as those with the high-
est spatial correlation to the canonical network maps of
Smith and colleagues (2009; Figure 2A). Spatial correla-
tion values are reported in Table 2.

To check that the T1 task + rest ICs were robust to
changes in participant groupings (see Methods: Parti-
cipants and Experimental Tasks section), we ran three
additional ICAs using the T1 data: one with the 120 partic-
ipants who were in all four subgroups (provided useable
data for all task and rest scans at both longitudinal time
points), one with the 158 participants who were in both
longitudinal time points’ Task A + Rest subgroups, and
one with the 131 participants who were in both longitudi-
nal time points’ Task B + Rest subgroups. The spatial

Li et al. 1509



correlations between the DMN, LFPN, and RFPN from
each of these new ICAs to the corresponding ICs used
in our final analyses ranged from 0.945 to 0.997. This in-
dicates that our identified ICs were largely consistent
across the different subsets of participants.

Dual Regression Analysis

We examined changes in connectivity between task and
rest states by submitting the network maps of each
group’s task and rest runs to dual regression analyses
(as in Utevsky et al., 2014). Dual regression analysis quan-
tifies voxelwise connectivity for each IC while controlling
for the other ICs (Nickerson et al., 2017; Filippini et al.,
2009). Each dual regression analysis comprised two
stages (Figure 1). First, each IC map was regressed onto
each run’s functional data set, resulting in run-specific
time courses for each IC. Second, those resulting time
courses were then regressed onto each run’s functional
data to estimate each voxel’s connectivity with each IC
while controlling for the other 24 ICs.

Each task + rest group at T1 used its own ICs for its
own separate dual regression analysis. So that the ICs

entering the dual regression were consistent across
longitudinal time points, T1 ICs were used for their cor-
responding T2 subgroups’ dual regression. In other
words, T1’s Task A + Rest ICs were used for the dual
regression analysis of T1 Task A + Rest and the dual re-
gression analysis for T2 Task A + Rest, whereas T1’s
Task B + Rest ICs were used for the dual regression
of T1 Task B + Rest and the dual regression analysis
for T2 Task B + Rest.

Task–Rest General Linear Model

To investigate differences in task and rest connectivity
within each participant, each participant’s resting-state
connectivity map was subtracted from their task–state con-
nectivity map separately for each task (Task A > Rest; Task
B > Rest), for each of the three networks of interest
(DMN, LFPN, and RFPN) and at each longitudinal time
point (T1 and T2). The resulting difference maps indicat-
ing task-minus-rest changes in connectivity with each net-
work were entered into separate group-level general linear
models for each task + rest subgroup, network, and
longitudinal time point. To further control for spurious

Table 2. Spatial Correlations between ICA Outputs and Canonical Maps from Smith et al. (2009)

Canonical Network
T1 Task A + Rest &
Smith et al., 2009

T1 Task B + Rest &
Smith et al., 2009

T1 Task A + Rest & T1
Task B + Rest

DMN .73 .80 .95

LFPN .71 .74 .97

RFPN .66 .63 .96

Figure 2. Task versus rest
connectivity with DMN and
LFPN and RFPN. (A) Canonical
networks of interest from the
T1 Task A + Rest and T1 Task B
+ Rest subgroups. Images
thresholded at 2.3 < z < 4.
(B) Task versus rest connectivity
for the three canonical
networks of interest. Rest >
task connectivity with DMN and
task > rest connectivity with
LFPN and RFPN show a
conjunction over precuneus
(white). FWE-corrected p < .01
with threshold-free cluster
enhancement.
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motion-related results that could arise from participants
moving more during task than rest—above and beyond
motion controls implemented during preprocessing—
each model contained additional subject-level nuisance
regressors representing individual differences in motion
between task and rest: (1) difference in average signal-to-
fluctuation-noise ratio, (2) difference in average volume-
to-volume motion, (3) difference in percentage of vol-
umes with FD greater than 0.5 mm, and (4) difference
in percentage of refRMS outlier volumes. Finally, we in-
cluded (5) an additional nuisance regressor to account for
sex (Smith et al., 2014; Filippi et al., 2013). All nuisance
regressors were demeaned.
We generated bidirectional contrasts comparing task and

rest states in each of the three networks of interest for each
task + rest subgroup at each longitudinal time point.
Statistical significance was determined using Monte Carlo
permutation-based statistical thresholding with 10,000 per-
mutations, family-wise error (FWE)-corrected for multiple
comparisons across the whole brain (Winkler, Ridgway,
Webster, Smith, & Nichols, 2014). Activation clusters were
estimated using threshold-free cluster enhancement (Smith
& Nichols, 2009).
We conducted conjunction analyses across both tasks,

separately for each longitudinal time point (i.e., conjunc-
tion of T1 Task A > rest with T1 Task B > rest; conjunc-
tion of T2 Task A > rest with T2 Task B > rest) for each
network of interest using the minimum statistic (Nichols,
Brett, Andersson, Wager, & Poline, 2005). This allowed us
to examine neural connectivity during task states in general,
rather than connectivity specific to Task A or Task B. These
conjunction analyses resulted in a task > rest and a rest >
task connectivity map for each network of interest (DMN,
LFPN, and RFPN) and at each longitudinal time point.

ROI Identification

To restrict subsequent age-related analyses to our a priori
ROI, we identified a precuneus ROI by masking the T1
conjunction of task > rest connectivity with LFPN, task >
rest connectivity with RFPN, and rest > task connectivity
with DMN (see Figure 2B) with the Harvard–Oxford atlas’s
anatomical precuneus ROI thresholded at 70% (Desikan
et al., 2006). Participants’ task and rest connectivity param-
eters were then extracted from this precuneus ROI for
each longitudinal time point and network.

Experimental Design and Statistical Analysis

Age-related differences in connectivity parameters were
further probed across data from both longitudinal time
points using a mixed-model approach in R with the pack-
age nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core
Team, 2019). Mixed models (also known as hierarchical
linear models, multilevel models, or random-effects
models) as applied to longitudinal data sets allow longi-
tudinal time points to be nested within participants by

modeling participant identity as a random effect. ROI
mixed models were run on connectivity parameters com-
bined across T1 and T2, separately for each task (e.g., T1
& T2 Task A + Rest data in one set of analyses; T1 & T2
Task B + Rest data in a separate set of analyses). This
allowed us to self-replicate any developmental changes
in task-versus-rest connectivity across two different tasks.

To test for significant developmental differences, we
first fit a null, intercept-only model including a fixed and
random intercept. We then compared the intercept-only
model to three different age-related models: one with a
mean-centered linear continuous age term to test for
monotonic age-related changes; one with mean-centered
linear and quadratic age terms to test for additional qua-
dratic age-related changes (e.g., developmental peaks or
troughs); and one with mean-centered linear, quadratic,
and cubic age terms to test for additional cubic age-related
changes (e.g., developmental changes that emerge and
then stabilize; Madhyastha et al., 2018). Likelihood ratio
tests between the intercept-only, linear, quadratic, and
cubic models were used to determine whether the age-
related models with significant age parameters significantly
improved model fit over the intercept-only model or the
next simplest model with a significant age parameter.

To rule out overall task performance or engagement as
a confound for any significant age-related findings, we ran
additional models adding a metric of task engagement as
an additional regressor to any model with significant age-
related findings that may have been driven by neural ac-
tivity during task. The metric for Task A was participants’
learning rates, as measured by the percentage of trials in
which feedback was successfully used on the subsequent
trial (Peters et al., 2016; Peters, Braams, et al., 2014). The
metric for Task B was participants’ self-reported liking
of winning money for self, reported at the end of the
scanning session (Braams et al., 2015; Braams, Güroğlu,
et al., 2014; Braams, Peters, et al., 2014). Task B self-report
metrics were not collected from 87 participants at T1 and
6 participants at T2. Consequently, task engagement
control analyses for Task B were run with fewer par-
ticipants (n = 248) and data points (n = 353) than the
age-only models.

Table 3. Number of Participants and Data Points in Mixed-
model Analyses

T1 & T2 Task +
Rest Subgroup

Participants
n

Data
Points
n

Task A + Rest: All participants 265 423

Task B + Rest: All participants 253 384

Task A + Rest: Task engagement
analyses

265 423

Task B + Rest: Task engagement
analyses

248 353

Li et al. 1511



To rule out motion issues as a confound for any signif-
icant age-related findings, we ran additional models add-
ing the percentage of volumes with FD > 0.5 mm for the
task runs and the rest run as an additional regressor to
any model with significant age-related findings.

RESULTS

Precuneus Connectivity Distinguishes Task and
Rest States across Development

The whole-brain conjunction analyses across both tasks
at each longitudinal time point show that precuneus is
both significantly more connected with both LFPN and
RFPN at task than at rest and significantly more con-
nected with DMN at rest than during task (Figure 2B;
Table 4). Thus, in our cross-sectional samples at both
T1 and T2, we replicate Utevsky and colleagues’ (2014)
finding that precuneus connectivity distinguishes be-
tween tasks and rest states in adults via varying connec-
tivity with DMN (rest > task) and LFPN (task > rest).
Notably, we also extend this finding to connectivity with
RFPN (task > rest) and to cross-sectional neural data
from participants between the ages of 8 and 26 years.

The whole brain conjunction also indicated that lat-
eral occipital cortex and pre/postcentral gyrus exhibited
a similar connectivity profile to precuneus, though we

note that the precuneus was the largest conjunction
cluster at both longitudinal time points (Table 4). As
we a priori hypothesized that precuneus would exhibit
state-dependent connectivity changes (Utevsky et al.,
2014), subsequent ROI analyses to probe developmen-
tal connectivity changes were conducted within our
conjunction result, masked by a precuneus anatomical
ROI (see Methods: ROI Identification section).

Task/Rest Connectivity Differences between
Precuneus and LFPN Increase with Age

We applied mixed models to the longitudinal precuneus
connectivity parameters extracted from our precuneus
ROI. This allowed us to test for age-related changes in
task–rest connectivity between the precuneus and each
of the three networks of interest, while accounting for the
repeated measures in our longitudinal data. Separate
mixed models were applied to Task A + Rest data and
to Task B + Rest data, which allowed us to use two dif-
ferent tasks to (1) self-replicate any developmental find-
ings across tasks and (2) show that such findings are
generalizable to task state rather than specific to a par-
ticular task.
We found a significant linear effect of age in task > rest

precuneus connectivity with LFPN in both of the tasks

Table 4. Regions Exhibiting Task- and Rest-dependent Connectivity Changes with DMN and FPNs

Longitudinal Time Point Probabilistic Anatomical Label x y z p Cluster Extent

T1 Precuneus cortex (86%) 3 −63 33 < .001 152

Inferior lateral occipital cortex
(61%), occipital fusiform gyrus (9%)

−45 −75 −9 < .001 108

Postcentral gyrus (51%), precentral
gyrus (30%)

−60 −6 24 < .001 101

Insular cortex (74%), frontal orbital
cortex (8%)

−36 15 −12 .002 12

T2 Precuneus cortex (26%), cuneal cortex
(18%), supracalcarine cortex (17%),
intracalcarine cortex (9%)

12 −66 21 < .001 179

Inferior lateral occipital cortex (50%),
superior lateral occipital cortex (11%)

−39 −81 6 < .001 75

Superior lateral occipital cortex (67%),
precuneus (1%)

30 −69 51 < .001 71

Precentral gyrus (23%), postcentral gyrus
(19%), central opercular cortex (4%)

−57 −6 18 .003 63

Frontal pole (87%) −24 60 0 < .001 35

Inferior lateral occipital cortex (39%),
occipital fusiform gyrus (19%)

−42 −72 −12 < .001 26

Regions at the conjunction of LFPN task > rest, RFPN task > rest, and DMN rest > task, FWE-corrected p < .01 (see Methods section) with a cluster
extent of at least 10 voxels. Probabilistic anatomical labels refer to the likelihood that the listed max voxel coordinates are within the given Harvard–
Oxford Cortical Structural Atlas region.
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(βLinearAge = 0.56, p = .0016 for Task A subgroup;
βLinearAge = 0.55, p < .001 for Task B subgroup), such
that increasing age was associated with greater task-
minus-rest differences in precuneus–LFPN connectivity
(Figure 3A). For both tasks, adding a linear age term
significantly improved model fit over the intercept-only
model (χ2(1) = 10.19, p = .0014 for Task A subgroup;
χ2(1) = 12.65, p < .001 for Task B subgroup). Additional
quadratic and cubic age regressors were not significant in
models for both tasks (all ps > .05).

We next ran control analyses to examine whether these
effects could be attributed to overall task performance or
engagement. When learning rate, as a metric of task
performance/engagement, was added to the linear age
model for Task A (feedback learning task), age remained a
significant predictor (βLinearAge = 0.51, p= .0070), but learn-
ing rate was not a significant predictor (βLearningRate =
0.12, p = .39) of task > rest precuneus–LFPN connectiv-
ity. When self-reported reward liking, as a metric of task
performance/engagement, was added to the linear age

Figure 3. Precuneus–LFPN
connectivity changes across
development at rest but not
task. (A) Across both tasks,
task–rest connectivity
differences between precuneus
and LFPN significantly linearly
increased with age. Further
probing task connectivity and
rest connectivity revealed (B)
no significant age-related
relationships between
precuneus–LFPN connectivity at
task but (C) a significant linear
age-related decrease in
precuneus–LFPN connectivity at
rest. Note that the resting-state
data in both C panels were
drawn from the full set of
participants. Each C panel
reflects overlapping but
different samples that were
submitted to separate dual
regression analyses. Connected
lines link longitudinal data
points from the same
participant. Shaded areas
represent 95% confidence
intervals around linear best fit
lines.
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model for Task B (reward processing task), age remained a
significant predictor (βLinearAge = 0.52, p = .0037), but re-
ward liking was not a significant predictor (βRewardLiking =
−0.26, p= .41) of task> rest precuneus–LFPN connectivity.
Thus, our age-related changes in connectivity cannot be
attributed to age-related changes in overall task perfor-
mance or engagement.

We also ran control analyses to examine whether the
relationship between age and precuneus–LFPN task >
rest connectivity could be attributed to motion, as mea-
sured by a task or rest run’s percentage of volumes with
FD > 0.5 mm. In all cases, adding the percentage of vol-
umes with FD > 0.5 mm in the task or rest run to the
linear age model resulted in linear age remaining a signif-
icant predictor of task > rest precuneus–LFPN connectiv-
ity (all ps < .014) and percentage of volumes with FD >
0.5 mm not being a significant predictor (all ps > .33).
This is despite the fact that the percentage of volumes
with FD > 0.5 mm exhibits a significant negative linear
relationship with age for both groups across the task
and rest data (Task A + Rest subgroup, rest data β =
−0.0004, p = .0097, task data β = 0.0009, p < .0001;
Task B + Rest subgroup, rest data β = −0.0005, p =
.0029, task data β = −0.0012, p = .0003). Thus, whereas
motion as measured by the percentage of volumes with
FD > 0.5 mm does increase linearly with age, linear age
remains a significant predictor of task > rest precuneus–
LFPN connectivity even after accounting for motion.

We found no significant age-related changes in task-
minus-rest precuneus connectivity with DMN and RFPN
that replicated across both tasks. There was a significant cu-
bic effect of age on task-minus-rest connectivity between
precuneus and DMN in the Task A subgroup (βCubicAge =
0.20, p = .035), but the model with linear, quadratic, and
cubic age regressors did not fit significantly better than the
intercept only model (χ2(3) = 4.54, p= .21). Furthermore,
this cubic effect of age on precuneus–DMN connectivity did
not replicate in the Task B subgroup (βCubicAge = −0.0027,
p = .80). All other linear, quadratic, and cubic age effects
were nonsignificant for task-minus-rest connectivity be-
tween precuneus and DMN, and precuneus and RFPN (all
ps > .05). Thus, although precuneus was significantly more
connected to DMN for rest > task and significantly more
connected to RFPN for task > rest across the sample and
at both time points, no developmental changes were
observed in this connectivity.

Connectivity between Precuneus and LFPN
Diminishes with Age during Rest but Not Task

To further probe whether the age-related linear increase
in task–rest precuneus connectivity with LFPN was due to
increased connectivity during task or decreased connec-
tivity during rest, we ran additional mixed models on the
connectivity parameters between precuneus and LFPN at
task and at rest. For both Task A and Task B, there was no
significant linear effect of age upon precuneus–LFPN

connectivity during task (βLinearAge = 0.80, p = .63 for
Task A; βLinearAge = 0.088, p = .55 for Task B; Figure 3B).
Additional models with task engagement and linear age
as predictors of precuneus–LFPN connectivity during task
found age and task engagement to be nonsignificant pre-
dictors in both tasks, and task engagement alone also failed
to significantly predict precuneus–LFPN connectivity during
task (all predictor ps > .05). Thus, precuneus connectivity
to the LFPN task-based network neither varied by age nor
by task nor by task engagement.
There was, however, a significant linear effect of age

during rest (βLinearAge = −0.57, p < .001 for Task A sub-
group; βLinearAge = −0.50, p = .0020 for Task B sub-
group), such that increasing age was associated with
reduced connectivity between precuneus and LFPN at
rest (Figure 3C; we reiterate here that the Task A and
Task B subgroups represent overlapping but nonidentical
samples drawn from the full participant set and submit-
ted to separate dual regression analyses). For both sub-
groups, adding a linear age term significantly improved
model fit over the intercept-only model (χ2(1) = 12.12,
p < .001 for Task A subgroup; χ2(1) = 9.86, p = .0017
for Task B subgroup). Additional models with linear age
and the percentage of volumes with FD > 0.5 mm in the
resting-state run found linear age to remain a significant
predictor, whereas the percentage of volumes with FD >
0.5 mm was not a significant predictor (βLinearAge =
−0.58, pLinearAge = .0006, βpFD = −15.71, ppFD = .72 for
Task A subgroup; βLinearAge = −.41, pLinearAge = .014,
βpFD = 37.03, ppFD = .40 for Task B subgroup). Thus,
linear age remains a significant predictor of precuneus–
LFPN connectivity at rest, even after accounting for motion.
Additional quadratic age regressors were nonsig-

nificant in the models with linear and quadratic age
(βQuadraticAge = 0.014, p = .67 for Task A subgroup;
βQuadraticAge = −0.0086, p = .78 for Task B subgroup).
In the Task A subgroup, the model with linear, quadratic,
and cubic age regressors resulted in a nonsignificant ef-
fect of linear age (βLinearAge = −0.030, p = .91) and sig-
nificant effects of quadratic (βQuadraticAge = 0.085, p =
.045) and cubic (βCubicAge = −0.017, p = .0089) age. This
cubic age model fit significantly better than the linear age
model for the Task A subgroup (χ2(2) = 7.16, p = .028).
In the Task B subgroup, however, the cubic age model re-
sulted in nonsignificant regressors for linear, quadratic, and
cubic age (βLinearAge =−0.11, p= .68, βQuadraticAge = 0.034,
p= .40, and βCubicAge =−0.011, p= .087, respectively), and
the cubic age model did not fit significantly better than the
linear age model (χ2(2) =3.07, p = .22). These results sug-
gest that linear age may be a more consistently parsimoni-
ous predictor of developmental changes in precuneus–
LFPN connectivity at rest.

DISCUSSION

In this study, we investigated the state-dependent func-
tional connectivity of the precuneus across development

1514 Journal of Cognitive Neuroscience Volume 31, Number 10



in a large cross-sectional and longitudinal sample of par-
ticipants between the ages of 8 and 26 years. Previous
work has shown that the precuneus serves as a unique
hub distinguishing between task and rest states in the
adult brain (Utevsky et al., 2014), yet little has been
known about the role of precuneus in the developing
brain. Using dual regression analyses to track network-
based functional connectivity across the sample, we show
that the precuneus exhibits both greater functional con-
nectivity with two task-based networks (RFPN and LFPN)
during task compared with rest, as well as greater func-
tional connectivity with the rest-based DMN during rest
compared with task. This result replicated across two dif-
ferent tasks and at two longitudinal time points. Thus,
the role of precuneus in mediating between task and rest
states is evident throughout development from child-
hood through early adulthood.
We next examined whether the mediating function of

the precuneus strengthens or matures over development
by searching for age-related changes in state-dependent
functional connectivity between precuneus and LFPN,
RFPN, and DMN. Across two distinct tasks, we found a
significant linear age-related increase in state-dependent
functional connectivity between precuneus and LFPN,
such that task > rest connectivity between precuneus
and LFPN significantly linearly increased with age from
childhood to adulthood. We determined that the rela-
tionship between age and task > rest precuneus–LFPN
connectivity was driven by an age-related decrease
in precuneus–LFPN connectivity during rest. Such age-
related increasing segregation between LFPN and a region
of DMN during rest is consistent with prior work showing
age-related increases in network segregation in both
structural (Baum et al., 2017) and resting-state data
(Sherman et al., 2014; Uddin et al., 2011; Fair et al.,
2007, 2008). We note that our developmental findings
are strengthened by BrainTime’s accelerated longitudinal
design, in which both cross-sectional and longitudinal
effects can be captured.
In contrast to the observed developmental connec-

tivity changes during rest, task-related connectivity be-
tween precuneus and LFPN was continuously high
across ages and showed no developmental changes.
This suggests that age-related increases in network segre-
gation shown during rest (Sherman et al., 2014; Uddin
et al., 2011; Fair et al., 2007, 2008) may not occur during
task and/or do not apply to precuneus–LFPN connec-
tivity. Finally, we found that precuneus’s state-dependent
connectivity with DMN (rest > task) and RFPN (task >
rest) remained developmentally stable, with no signifi-
cant effect of linear, quadratic, and/or cubic age.
Notably, we did not find task performance or engage-

ment to significantly predict task > rest precuneus–LFPN
connectivity after accounting for the effect of age. Further-
more, we found no significant relationship between indi-
viduals’ task performance or engagement and their
precuneus–LFPN connectivity during task. This is sur-

prising, given that prior work has shown that different
tasks differentially affect segregation and integration
between neural networks (Khambhati, Medaglia, Karuza,
Thompson-Schill, & Bassett, 2018; Cohen & D’Esposito,
2016), that task performance affects the FPN’s overall acti-
vation and functional connectivity throughout the brain
(Dwyer et al., 2014; Cole et al., 2013; Satterthwaite, Wolf,
et al., 2013), and that DMN–RFPN connectivity facilitates
response time in a memory task (Fornito et al., 2012).
Thus, our findings highlight the unique role of the precu-
neus, which tracks whether the brain is engaged in a task
state generally, with no observed differences between the
two tasks in the BrainTime data set. Future work could
investigate whether precuneus–LFPN connectivity is mod-
erated by task engagement for more variably engaging/
demanding tasks (e.g., n-back tasks with varying n as in
Cohen & D’Esposito, 2016; Satterthwaite, Wolf, et al.,
2013). Application of network-based psychophysiologi-
cal interaction approaches (Utevsky, Smith, Young, &
Huettel, 2017) can also be used to determine whether
the time course of precuneus–LFPN connectivity is mod-
ulated by moment-to-moment changes in task demands
(e.g., precuneus–LFPN connectivity for high demand >
low demand blocks within the same run).

We note that this study replicates the previous findings
of Utevsky and colleagues’ (2014) study of adult neural
data and extends them in three significant ways. First,
we extend the findings to a large cross-sectional and lon-
gitudinal developmental sample, which allowed us to
show that the role of precuneus as a functional core of
the DMN is in place in childhood. The developmental tra-
jectory of task > rest precuneus–LFPN connectivity sug-
gests, however, that younger populations than those in
our sample (e.g., children younger than 8 years) may ex-
hibit no differences in precuneus–LFPN connectivity for
task versus rest states. Thus, future work could examine
precuneus connectivity in even younger participants to
determine if this is, in fact, the case. Second, our work
further extends the precuneus connectivity finding to
two tasks different from those used in the adult study
(Utevsky et al., 2014). This strengthens the hypothesis
that precuneus mediates between rest and task generally,
regardless of the specific task. Third, our study comple-
ments prior work: Although the previous adult study col-
lected the resting-state scan last, after the completion of
the three tasks (Utevsky et al., 2014), our study collected
the resting-state scan first, before the task runs. This
avoids the concern that recent exposure to a task may
alter subsequent resting-state connectivity (Tung et al.,
2013; Stevens, Buckner, & Schacter, 2010; Waites,
Stanislavsky, Abbott, & Jackson, 2005). Thus, the two
studies together suggest that the precuneus’s unique
role in mediating between task and rest states holds, re-
gardless of task versus rest order.

Prior studies investigating developmental changes in
whole-brain connectivity patterns have often used
graph-theoretical approaches that examine connectivity
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strength between distributed nodes (Fair et al., 2007,
2008; see Stevens, 2016; Ernst, Torrisi, Balderston,
Grillon, & Hale, 2015; Power, Fair, Schlaggar, & Petersen,
2010, for reviews). Such developmental work, however,
generally investigates connectivity during rest rather
than during task (but see Joseph et al., 2012) and do
not directly compare across task and rest states, as in this
study. Given that graph theory analyses have also im-
plicated precuneus as a key functional hub during rest
(Tomasi & Volkow, 2010) and have been applied to
understand changes in task-versus rest-based functional
connectivity in adult brains (Bolt, Nomi, Rubinov, &
Uddin, 2017; Cole, Bassett, Power, Braver, & Petersen,
2014), combining dual regression and task-versus-rest
analyses with graph theory approaches could be comple-
mentary and yield further insight as to how neural hubs
affect processing state.

This study’s connectivity analyses were applied to task
and rest scans ranging from approximately 5 to 8 min.
Although previous work has shown that this duration is
suitable for stable estimates of connectivity networks (Van
Dijk et al., 2010; Fox et al., 2005), the reliability of connec-
tivity estimates is also known to increase with scan time,
plateauing around 12 min (Birn et al., 2013). This study
also used 0.5 mm as the FD threshold (Power et al.,
2012) for spike regression, whereas more recent work
has used even more stringent FD thresholds of 0.25 mm
(Parkes, Fulcher, Yücel, & Fornito, 2018; Satterthwaite,
Elliott, et al., 2013) or 0.2 mm (Ciric et al., 2017). Future
work could use longer task- and rest-based fMRI scans with
more stringent motion thresholds to determine if our
findings replicate under longer durations and stricter
motion correction.

Additional future studies could also use structural neu-
roimaging techniques, such as diffusion tensor imaging,
to determine whether developmental changes in
precuneus–LFPN functional connectivity are reflected in
structural changes in the developing brain. Converging
evidence from nonhuman primate anatomical tracing
studies (Leichnetz, 2001) and resting-state functional
connectivity work in humans and nonhuman primates
(Margulies et al., 2009) suggest that there are cortical pro-
jections between precuneus and regions of the LFPN, in-
cluding lateral pFC and lateral parietal cortex (Cavanna &
Trimble, 2006). Future work should examine whether
and how such structural connections between precuneus
and LFPN underlie state-dependent differences in func-
tional connectivity and how they may change across
development.

It is important to understand developmental changes
in task- and rest-state connectivity, as altered connectivity
has been reported for numerous psychological disorders
(see Cohen, 2018; Greicius, 2008, for reviews). For exam-
ple, a maturational lag in DMN-to-FPN connectivity has
been associated with attention-deficit/hyperactivity disor-
der (Sripada, Kessler, & Angstadt, 2014), and abnormal
resting-state functional connectivity between DMN and

FPN has been found in patients with obsessive compul-
sive disorder (Stern, Fitzgerald, Welsh, Abelson, & Taylor,
2012) and with impaired consciousness (Long et al.,
2016). Future work could investigate whether precu-
neus’s task- and rest-based connectivity is altered in atyp-
ical development and whether any such deviations from
typical connectivity development correspond to behav-
ioral or psychological impairments.
In this study, we demonstrate that precuneus plays a

key role in mediating between task and rest states via
connectivity with DMN and FPNs across typical develop-
ment. These results underscore the unique nature of an
enigmatic brain region that has been implicated in pro-
cesses as varied as memory, self-processing, decision-
making, and even consciousness (Cavanna & Trimble,
2006), while also pointing to future targets for under-
standing changes in neural connectivity in typical and
atypical development.
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