5 research outputs found

    Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: an overview of the DAURE campaign

    Get PDF
    DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol

    Human exposure and risk assessment of PAHs bound to three PM fractions (10, 2.5 and 1) in an area influenced by a cement plant

    No full text
    In the present study, we evaluated the concentrations of PAHs in 3 PM fractions (10, 2.5 and 1) collected in the surroundings of a cement plant located in Barcelona. PAH content and speciation were developed for the three fractions to elucidate their distribution among different sizes. Complementarily, the human health risks associated to the PAH exposure were risks by considering the daily activity pattern of an average adult living in of Barcelona (Spain)

    Detection and simulation of wildfire smoke impacting a Mediterranean urban atmosphere

    Get PDF
    The combined use of chemical analysis of organic molecules in atmospheric aerosols (PM1) collected in situ in Barcelona and optical measurements with a light detection and ranging (LIDAR) instrument allowed the characterization of the smoke plume from a wildfire that reached the city in July 2012. Analysis of the chemical composition of the aerosols collected on 23 July 2012 confirmed the large effect of biomass burning on urban air quality during a period of several hours. Typical biomass burning tracers, such as levoglucosan, dehydroabietic acid and polycyclic aromatic hydrocarbons (PAH) were enhanced at the same time as the aerosol concentrations in the boundary layer increased. According to air-mass trajectory modeling, the biomass burning particles originated from a severe wildfire burning 120 km northeast of the city. On the following days, no significant contribution of wildfire smoke was found in the urban air, although the lidar detected particles aloft. A Lagrangian particle dispersion model (FLEXPART) was used to simulate the transport of aerosols (PM2.5) and carbon monoxide (CO), and the simulated concentrations in Barcelona were compared to in-situ measurements. FLEXPART simulated the onset of the wildfire smoke plume event in the urban center in the early morning of 23 July successfully; by contrast, the fast passage of the plume at the surface and the decoupling of the cleaner boundary layer from the persistent smoke plume aloft was not well captured. This was attributed to the fact that the model did not capture the local sea-breeze circulation well enough.Peer Reviewe

    Developmental effects of aerosols and coal burning particles in zebrafish embryos

    No full text
    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. © 2013 Elsevier B.V. All rights reserved

    Aerosol source apportionment uncertainty linked to the choice of input chemical components

    No full text
    International audienceFor a Positive Matrix Factorization (PMF) aerosol source apportionment (SA) studies there is no standard procedure to select the most appropriate chemical components to be included in the input dataset for a given site typology, nor specific recommendations in this direction. However, these choices are crucial for the final SA outputs not only in terms of number of sources identified but also, and consequently, in the source contributions estimates. In fact, PMF tends to reproduce most of PM mass measured independently and introduced as a total variable in the input data, regardless of the percentage of PM mass which has been chemically characterized, so that the lack of some specific source tracers (e.g. levoglucosan) can potentially affect the results of the whole source apportionment study. The present study elaborates further on the same concept, evaluating quantitatively the impact of lacking specific sources’ tracers on the whole source apportionment, both in terms of identified sources and source contributions. This work aims to provide first recommendations on the most suitable and critical components to be included in PMF analyses in order to reduce PMF output uncertainty as much as possible, and better represent the most commons PM sources observed in many sites in Western countries. To this aim, we performed three sensitivity analyses on three different datasets across EU, including extended sets of organic tracers, in order to cover different types of urban conditions (Mediterranean, Continental, and Alpine), source types, and PM fractions. Our findings reveal that the vehicle exhaust source resulted to be less sensitive to the choice of analytes, although source contributions estimates can deviate significantly up to 44 %. On the other hand, for the detection of the non-exhaust one is clearly necessary to analyze specific inorganic elements. The choice of not analysing non-polar organics likely causes the loss of separation of exhaust and non-exhaust factors, thus obtaining a unique road traffic source, which provokes a significant bias of total contribution. Levoglucosan was, in most cases, crucial to identify biomass burning contributions in Milan and in Barcelona, in spite of the presence of PAHs in Barcelona, while for the case of Grenoble, even discarding levoglucosan, the presence of PAHs allowed identifying the BB factor. Modifying the rest of analytes provoke a systematic underestimation of biomass burning source contributions. SIA factors resulted to be generally overestimated with respect to the base case analysis, also in the case that ions were not included in the PMF analysis. Trace elements were crucial to identify shipping emissions (V and Ni) and industrial sources (Pb, Ni, Br, Zn, Mn, Cd and As). When changing the rest of input variables, the uncertainty was narrow for shipping but large for industrial processes. Major and trace elements were also crucial to identify the mineral/soil factor at all cities. Biogenic SOA and Anthropogenic SOA factors were sensitive to the presence of their molecular tracers, since the availability of OC alone is unable to separate a SOA factor. Arabitol and sorbitol were crucial to detecting fungal spores while odd number of higher alkanes (C27 to C31) for plant debris
    corecore