493 research outputs found

    Laser beam attenuation in LIF measurements on NO in a diesel engine

    Get PDF
    The effect of laser beam attenuation on nitric oxide measurements in a diesel engine is presented. A number ofexperimental ways to correct for this attenuation are discussed: transmission measurements, bidirectional laserinducedfluorescence, and Raman scattering by N\u3csub\u3e2\u3c/sub\u3e. Comparison of the results indicates that the attenuation isgenerally not uniform over the cylinder. Instead it seems to be less severe over the field of view (i.e. the upper partof the cylinder)

    Regulation of three virulence strategies of Mycobacterium tuberculosis : A success story

    Get PDF
    Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome

    Quantitative nitric oxide measurements by means of laser-induced fluorescence in a heavy-duty Diesel engine

    Get PDF
    Quantitative in-cylinder laser-induced fluorescence measurements ofnitric oxide in a heavy-duty Diesel engine are presented. Special attention is paid to experimental techniques to assess the attenuation of the laser beam and the fluorescence signal by the cylinder contents.This attenuation can be considerable at certain stages in the combustionstroke. The temperature and pressure dependence of the fluorescence signal is described in various models. In this study, LIFsim was used.Finally, calibration was realized by concentration measurements in the exhaust gas

    Genetic and phenotype analysis of Borrelia valaisiana sp.nov. (Borrelia genomic groups VS116 and M19)

    Get PDF
    To clarify the taxonomic status of two recently described Borrelia genomic groups, groups VS116 and M19, three group VS116 strains and eight group M19 strains isolated from Ixodes ricinus ticks in Switzerland, The Netherlands, and the United Kingdom were characterized. PCR-restriction fragment length polymorphism (RFLP) analysis of the 5S-23S intergenic spacer amplicon, rRNA gene restriction analysis, 16S rRNA gene sequence analysis, randomly amplified polymorphic DNA (RAPD) fingerprinting, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting with monoclonal antibodies were used for genetic and phenotypic analysis. The PCR-RFLP and RAPD patterns of three group VS116 strains and eight group M19 strains were identical but differed from those of Borrelia burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, and Borrelia japonica. DNAs from all group VS116 and M19 strains yielded three fragments (6.9, 3.2, and 1.4 kb) and four fragments (2.1, 1.2, 0.8, and 0.6 kb) after digestion with EcoRV and HindIII, respectively, hybridizing with an Escherichia coli 16S + 23S cDNA probe. The SDS-PAGE protein profiles of group VS116 and M19 strains were heterogeneous. Phylogenetic analysis of the partial 16S rRNA gene sequences showed that group VS116 and M19 spirochetes were members of a Borrelia species distinct from previously characterized members of the genus Borrelia. Based on our present study and data from previous DNA-DNA hybridizations, a new Borrelia species, Borrelia valaisiana sp.nov., in the B. burgdorferi complex, is proposed. Strain VS116 is the type strain of this new specie

    SyNDI : Synchronous network data integration framework

    Get PDF
    Background: Systems biology takes a holistic approach by handling biomolecules and their interactions as big systems. Network based approach has emerged as a natural way to model these systems with the idea of representing biomolecules as nodes and their interactions as edges. Very often the input data come from various sorts of omics analyses. Those resulting networks sometimes describe a wide range of aspects, for example different experiment conditions, species, tissue types, stimulating factors, mutants, or simply distinct interaction features of the same network produced by different algorithms. For these scenarios, synchronous visualization of more than one distinct network is an excellent mean to explore all the relevant networks efficiently. In addition, complementary analysis methods are needed and they should work in a workflow manner in order to gain maximal biological insights. Results: In order to address the aforementioned needs, we have developed a Synchronous Network Data Integration (SyNDI) framework. This framework contains SyncVis, a Cytoscape application for user-friendly synchronous and simultaneous visualization of multiple biological networks, and it is seamlessly integrated with other bioinformatics tools via the Galaxy platform. We demonstrated the functionality and usability of the framework with three biological examples - we analyzed the distinct connectivity of plasma metabolites in networks associated with high or low latent cardiovascular disease risk; deeper insights were obtained from a few similar inflammatory response pathways in Staphylococcus aureus infection common to human and mouse; and regulatory motifs which have not been reported associated with transcriptional adaptations of Mycobacterium tuberculosis were identified. Conclusions: Our SyNDI framework couples synchronous network visualization seamlessly with additional bioinformatics tools. The user can easily tailor the framework for his/her needs by adding new tools and datasets to the Galaxy platform.</p

    Overview of the SME: Implications and Phenomenology of Lorentz Violation

    Full text link
    The Standard Model Extension (SME) provides the most general observer-independent field theoretical framework for investigations of Lorentz violation. The SME lagrangian by definition contains all Lorentz-violating interaction terms that can be written as observer scalars and that involve particle fields in the Standard Model and gravitational fields in a generalized theory of gravity. This includes all possible terms that could arise from a process of spontaneous Lorentz violation in the context of a more fundamental theory, as well as terms that explicitly break Lorentz symmetry. An overview of the SME is presented, including its motivations and construction. Some of the theoretical issues arising in the case of spontaneous Lorentz violation are discussed, including the question of what happens to the Nambu-Goldstone modes when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism can occur. A minimal version of the SME in flat Minkowski spacetime that maintains gauge invariance and power-counting renormalizability is used to search for leading-order signals of Lorentz violation. Recent Lorentz tests in QED systems are examined, including experiments with photons, particle and atomic experiments, proposed experiments in space and experiments with a spin-polarized torsion pendulum.Comment: 40 pages, Talk presented at Special Relativity: Will it Survive the Next 100 Years? Potsdam, Germany, February, 200
    corecore