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Optical measurements often exhibit mixed Poisson–Gaussian
noise statistics, which hampers the image quality, partic-
ularly under low signal-to-noise ratio (SNR) conditions.
Computational imaging falls short in such situations when
solely Poissonian noise statistics are assumed. In response
to this challenge, we define a loss function that explicitly
incorporates this mixed noise nature. By using a maximum-
likelihood estimation, we devise a practical method to
account for a camera readout noise in gradient-based pty-
chography optimization. Our results, based on both experi-
mental and numerical data, demonstrate that this approach
outperforms the conventional one, enabling enhanced image
reconstruction quality under challenging noise conditions
through a straightforward methodological adjustment.
© 2023 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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In the rapidly evolving field of computational imaging, ptychog-
raphy has emerged as a powerful technique capable of producing
high-resolution phase and amplitude images from diffraction
patterns. It involves translating a thin object through overlapping
illuminations and measuring the resulting diffraction patterns
behind the object with a camera sensor [1,2]. Subsequently,
the complex-valued image is constructed through an iterative
optimization algorithm, necessitating the formulation and min-
imization of a loss function, alternatively referred to as the
objective, cost, or error function. Ptychography has found appli-
cations in a wide range of topics, including label-free biological
imaging [3–5], optical metrology [6–10], and atomic-resolution
imaging using electron beams [11–13].

Fundamentally, the basis of ptychographic reconstructions is
the detection of photon counts on a camera sensor and, there-
fore, subject to Poissonian noise even under ideal measurement
conditions. Given the assumption of an underlying noise model,
a powerful and robust optimization strategy is the maximum-
likelihood estimation (MLE) principle [14]. By leveraging MLE

in ptychography, one seeks to estimate the studied object param-
eters that render the observed diffraction patterns most probable
[15–19]. However, an additive camera readout noise is often
neglected, thus leaving a gap in the fidelity of reconstructions.
This is a salient concern as the presence of readout noise,
typically Gaussian, is an important element of practical ptycho-
graphic measurements within the visible spectrum. Ignoring this
noise source oversimplifies the underlying statistical model and
introduces errors to the reconstructed image, especially when
the detected photon counts and the signal-to-noise ratio (SNR)
are low. The distinction between a Poissonian and a mixed Pois-
son–Gaussian noise model is depicted in the simulated images
presented in Fig. 1.

In this Letter, we propose a loss function for automatic
differentiation ptychography that explicitly incorporates both
Poissonian and Gaussian noise sources. This approach brings us
closer to the real-world conditions of ptychographic measure-
ments, thereby paving the way for superior performance in
image reconstruction under challenging noise conditions. We
outline a practical method to incorporate camera readout noise
in computational imaging. Furthermore, we provide a compre-
hensive comparison between the image reconstruction quality
using a mixed-statistics loss function and that of a conventional
loss function which presumes solely Poissonian noise statistics.
For this, we present reconstruction results obtained from both
experimental and numerical data.

In ptychography, the typical reconstruction approach involves
minimizing a loss function representing the difference between
the intensity values of the observed diffraction pattern Xk and the
anticipated diffraction patterns Ik(θ) as determined by a param-
eter set θ, which embodies the object under investigation, at all
pixel locations indexed by k. In the presence of measurement
noise, it is insightful to tackle the problem of ptychographic
reconstruction by maximizing the likelihood of the observed
given the object parameters. From this probabilistic perspec-
tive, one seeks the object parameters that make the observed
data most likely, which renders object retrieval more robust in
scenarios of low SNR.

In the Supplement 1 (section 1), we elaborate on deriving
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Fig. 1. Comparative visualization of a grsyscale image distorted
by different noise types. Panel (A) depicts an image with simulated
Poissonian noise, while panel (B) illustrates the effects of simu-
lated mixed Poisson–Gaussian noise resulting from additive readout
noise. Inlaid values indicate peak signal-to-noise ratio (PSNR) with
respect to the ground truth.

the maximum-likelihood estimation (MLE) loss functions for
two different types of noise statistics. When operating under
the assumption of Poissonian counting noise, the loss function
LPoisson that yields the maximum-likelihood estimate is expressed
as

LPoisson(θ) =
N∑︂

k=1

(︂√︁
Xk −

√︁
Ik(θ)

)︂2
, (1)

where the sum encompasses N statistically independent pixels
on the camera sensor. To account for Gaussian readout noise on
the camera sensor, an additional data acquisition step becomes
essential to extend the MLE loss function: the variance σ2

k of the
readout noise of the camera must be determined using multiple
full-frame dark images. With this additional information and the
assumption that the Poissonian component of the statistics can
be approximated by a Gaussian distribution, we formulate the
MLE loss function that incorporates mixed Poisson–Gaussian
noise statistics:

LMixed(θ) =
N∑︂

k=1

(︃
ln[Ik(θ) + σ

2
k ] +

[Xk − Ik(θ)]
2

Ik(θ) + σ2
k

)︃
. (2)

Note that this expression is not only relevant for pixels with high
photon counts where the Gaussian approximation of Poisson
statistics is most accurate but also for pixels with low photon
counts. Indeed, for those with low-count pixels, the Gaussian
readout noise is the dominant source of noise such that the devi-
ation of Poisson statistics from a Gaussian distribution becomes
irrelevant.

To validate the beneficial effect of the loss function LMixed(θ)
experimentally, we are considering a standard ptychography
setup in a transmission geometry (Fig. 2). A circular 500-µm
pinhole is illuminated with coherent light with a wavelength of
561 nm and relayed to the sample plane using two lenses with
a magnification of M = 3. Therefore, a binary target sample is
illuminated at 80 scanning positions with an overlap of approx-
imately 60 % between adjacent positions, which lies within the
ideal regime according to [20]. The scattered light is captured
by a CMOS camera positioned 38 mm away from the object. To
ensure a comprehensive comparison as a function of SNR, we
employ four different exposure settings per scanning position,
spanning a range from 30 µs to 300 ms, with each subsequent
exposure time differing by a factor of 10 (see Fig. 3). For each
exposure time, we determine the variances σ2

k by capturing a
stack of 300 dark images. This quantifies the readout noise level
associated with each pixel k of our camera. A comprehensive

Fig. 2. Schematic drawing of our ptychography setup used in the
experiment and for numerical simulations. A 500-µm pinhole is
illuminated and relayed onto the object using a 2-lens system. The
object is shifted laterally through the beam using an XY stage. A
CMOS camera records the diffraction intensities at a distance of
38 mm downstream of the object.

overview of further details about the experimental implementa-
tion and methodology can be found in Section 2 of Supplement 1.

By maintaining a constant illumination power, we acquire
four distinct ptychographic datasets, each corresponding to a
different signal-to-noise ratio (SNR), as demonstrated in the
top row of Fig. 3. With these datasets in hand, we proceed
to perform image reconstructions utilizing two different loss
functions (Eqs. (1) and (2)) within an automatic differentiation-
based ptychography framework, as detailed in [21] and similar
to [22]. For this analysis, we precalibrate the illumination field
using an additional high SNR measurement and restrict our opti-
mizations to the complex-valued object transmission functions,
particularly under decreasing SNR conditions. This approach
enables us to isolate the impact of the loss function choice from
the convergence behavior associated with an unknown illumi-
nation field. The reconstruction procedure is explained in more
detail in Section 3 of Supplement 1, and the source code and
raw data are available in [23] under open licenses. In scenar-
ios characterized by a high SNR, no noticeable disparity in the
image quality is observed between the two approaches. However,
when confronted with low-SNR conditions, where the signal
becomes immersed within the readout noise, the advantages of
the mixed-statistics MLE loss function become clear. The recon-
structed images exhibit superior quality and reveal finer details
that would otherwise remain obscured without accounting for
the readout noise statistics.

For a quantitative analysis and validation of our experimen-
tal findings, we generate a simulated object with phase and
amplitude contrasts which we treat as the ground truth. Using
numerical simulation and the ground truth object, we compute
the noisy diffraction patterns assuming Poissonian photon count
statistics and an additive Gaussian readout noise with a standard
deviation of σ = 1.5 counts. The simulation allows for varying
the illumination intensity given as the total number of photons
in an otherwise fixed illumination field that approximates the
experimental conditions shown in Fig. 3, thereby controlling the
measurement SNR.

The achieved reconstruction quality of the object O with
respect to the ground truth Ogt can now be quantified using the
correlation coefficient C = |⟨Ogt ,O⟩|

∥Ogt ∥·∥O∥
as defined and motivated

in [21] as a function of illumination intensity (Fig. 4). Here,
Ogt denotes the complex conjugate of Ogt, ⟨·, ·⟩ denotes the dot
product, and ∥ · ∥ denotes the norm. The simulation confirms the
same trend that we observe from the experiments: for low SNR,
optimization using a mixed-statistics loss function yields signifi-
cantly better reconstruction results. In the regime of high illumi-
nation intensities, all loss functions converge excellently (up to
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Fig. 3. Comparison of image reconstruction qualities from ptychographic datasets with decreasing signal-to-noise ratio (SNR) from
left to right. Top row: Ptychographic datasets at different camera exposures with total illumination intensity, respectively. Second row:
Reconstructions using a loss function assuming solely Poissonian noise statistics. Third row: Reconstructions using the loss function defined
by Eq. (2), which incorporates mixed Poisson–Gaussian noise statistics. The edge length of every image equals 3.5 mm.

Fig. 4. Correlation between ground truth and reconstructions as a function of the total photon count in the illumination field based
on numerical simulations. The dashed blue line represents reconstructions derived from intensity data where negative values have been
zero-cropped, while the solid line represents reconstructions that incorporate negative values, which can arise due to the additive Gaussian
noise component. (A) Amplitude and phase contrast reconstruction of the simulated object based on high-intensity diffraction patterns. For
comparison, with an illumination intensity of 3.4×105 photons the reconstructions achieved with LMixed (B) and LPoisson (C) are shown. The
edge length of every image equals 3.5 mm.

machine precision) as the readout noise becomes irrelevant, and
all assumed underlying probability density functions become
valid approximations. Image reconstruction using a Gaussian
loss function LGaussian(θ) =

∑︁N
k=1 (Xk − Ik(θ))

2 performs worst at
low illumination intensities. However, introducing a weighting
term as motivated in [24] leads to a noteworthy improve-
ment (shown in red) using LnormMSE(θ) =

∑︁N
k=1

(︂
Xk−Ik (θ)

sg[Ik (θ)]+ϵ

)︂2
, where

ϵ = 10−3 and sg[·] indicates a stop-gradient function. This nor-
malized MSE loss function can be interesting in cases where σ2

k
is impractical to obtain.

The intensity readout at a given pixel may be negative due to
the additive Gaussian component in the noise statistics. This can

occur in practice in an experiment via background subtraction,
when areas on the camera sensor detect only low intensities. As
a practical measure to keep the loss function real-valued when
calculating the square root of intensity for the Poissonian loss
function, negative-intensity values are customarily forced to zero
[25,26]. Hence, in both simulation and experimental scenarios,
we assign zero to negative-intensity values when optimizing
LPoisson. However, by zero-cropping the intensity data, we may
inadvertently eliminate valuable information, thereby causing a
potential bias in our reconstruction results. To examine this bias
and quantify the potential information contained within negative
values, we also test LMixed with zero-cropped data, as shown in
Fig. 4. The quality of reconstruction in these conditions falls
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between the results from optimizing LPoisson with zero-cropped
data and LMixed with unaltered data. This observation suggests
that the enhanced reconstruction quality derived from using a
mixed-statistics loss function can partially be credited to the
statistical information encapsulated in the negative pixel values
resulting from background subtraction.

The results presented in this study underscore the impor-
tance of considering mixed Poisson–Gaussian noise statistics
in ptychographic image reconstruction. We have demonstrated,
through both experimental and simulated data, that using an
MLE loss function that considers this mix of noise statistics
improves the reconstruction quality, particularly in low signal-
to-noise ratio conditions. This enhanced performance indicates
that the mixed-statistics loss function can extract more informa-
tion from the measured data by accurately accounting for the
underlying noise statistics. An interesting outcome of this study
concerns the practice of zero-cropping negative-intensity values.
We find that this practice introduces a bias into the reconstruc-
tions, highlighting the importance of preserving all statistical
information in the data.

It is worth noting that some types of detectors bypass the
issue of a significant Gaussian readout noise, such as high-
performance photon-counting hybrid pixel detectors notably
used in x ray ptychography [27,28]. In such cases, optimiz-
ing LPoisson(θ) can yield excellent reconstruction results. Future
research could focus on studying the convergence behavior of
a mixed-statistics loss function when the illumination field is
jointly optimized, as we have observed that optimizing LMixed(θ)
occasionally leads to a less reliable convergence when dealing
with a poor initial estimate for the illumination field. To ensure
valid comparison and to attain image retrieval under extremely
ill-posed conditions, we included the additional step of pre-
calibrating the illumination field in this study. Such a step is
typically unnecessary in well-posed ptychographic reconstruc-
tions [29] or other approaches to noise-robust phase retrieval
methods [30,31].

In summary, the findings presented here could potentially
propel significant advancements in the field of computational
imaging, leading to improved image retrieval under challeng-
ing noise conditions. By offering a more accurate reflection
of real-world ptychographic measurements, a loss function that
considers mixed Poisson–Gaussian noise statistics could greatly
contribute to various fields, including material science, biology,
and nanotechnology, where high-quality image reconstruction
under low-SNR conditions is critical. Moreover, the utility of a
mixed-statistics loss function is not just limited to ptychography
but extends to many computational and gradient-based imaging
methods, broadening its applicability [32–36].
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