21 research outputs found

    Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy

    Get PDF
    Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    Tiina Paunio on työryhmän UK10K jäsen.The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.Peer reviewe

    Plant defence against nematodes is not mediated by changes in the soil microbial community

    No full text
    1. Indirect plant defence, the recruitment of antagonists of herbivores, is well-known above the ground. In spite of various soil microorganisms acting as antagonists to root herbivores, it is still largely unknown whether plants can promote antagonistic microorganisms as an indirect defence mechanism. 2. In a greenhouse study we examined whether soil microorganisms could mediate plant defence against plant-feeding nematodes. Growth, nutrient contents and root exudation of three plant species (Plantago lanceolata, Holcus lanatus, Lotus corniculatus) and the performance of nematodes and fungal communities in the rhizospheres were measured. 3. The plant species differed in their effects on plant-feeding nematodes; however, the addition of soil microorganisms did not enhance nematode control. Nematode addition changed root exudation patterns and rhizosphere fungal community structure in a plant species-specific manner. Glucose levels in the root exudates of all three examined plant species were enhanced, and P. lanceolata root exudates contained higher levels of fumaric acid when nematodes had been added. 4. We conclude that nematodes have plant species-specific effects on root exudate chemistry and rhizosphere fungal community composition, but these effects do not necessarily enhance indirect control of nematodes by antagonistic microorganisms. More studies on below-ground plant defence are definitely needed

    Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus.

    No full text
    Identifying mutations that cause specific osteochondrodysplasias will provide novel insights into the function of genes that are essential for skeletal morphogenesis. We report here that an autosomal dominant form of Stickler syndrome, characterized by mild spondyloepiphyseal dysplasia, osteoarthritis, and sensorineural hearing loss, but no eye involvement, is caused by a splice donor site mutation resulting in "in-frame" exon skipping within the COL11A2 gene, encoding the alpha 2(XI) chain of the quantitatively minor fibrillar collagen XI. We also show that an autosomal recessive disorder with similar, but more severe, characteristics is linked to the COL11A2 locus and is caused by a glycine to arginine substitution in alpha 2(XI) collagen. The results suggest that mutations in collagen XI genes are associated with a spectrum of abnormalities in human skeletal development and support the conclusion of others, based on studies of murine chondrodysplasia, that collagen XI is essential for skeletal morphogenesis

    Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype

    No full text
    The Rab GTPase family comprises approximately 70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization

    Unexpected CEP290 mRNA Splicing in a Humanized Knock-In Mouse Model for Leber Congenital Amaurosis

    Get PDF
    Contains fulltext : 126167.pdf (publisher's version ) (Open Access)Leber congenital amaurosis (LCA) is the most severe form of retinal dystrophy with an onset in the first year of life. The most frequent genetic cause of LCA, accounting for up to 15% of all LCA cases in Europe and North-America, is a mutation (c.2991+1655AG) in intron 26 of CEP290. This mutation generates a cryptic splice donor site resulting in the insertion of an aberrant exon (exon X) containing a premature stop codon to CEP290 mRNA. In order to study the pathophysiology of the intronic CEP290 mutation, we generated two humanized knock-in mouse models each carrying ~6.3 kb of the human CEP290 gene, either with or without the intronic mutation. Transcriptional characterization of these mouse models revealed an unexpected splice pattern of CEP290 mRNA, especially in the retina. In both models, a new cryptic exon (coined exon Y) was identified in ~5 to 12% of all Cep290 transcripts. This exon Y was expressed in all murine tissues analyzed but not detected in human retina or fibroblasts of LCA patients. In addition, exon x that is characteristic of LCA in humans, was expressed at only very low levels in the retina of the LCA mouse model. Western blot and immunohistochemical analyses did not reveal any differences between the two transgenic models and wild-type mice. Together, our results show clear differences in the recognition of splice sites between mice and humans, and emphasize that care is warranted when generating animal models for human genetic diseases caused by splice mutations
    corecore