26 research outputs found

    How does our motor system determine its learning rate?

    Get PDF
    Motor learning is driven by movement errors. The speed of learning can be quantified by the learning rate, which is the proportion of an error that is corrected for in the planning of the next movement. Previous studies have shown that the learning rate depends on the reliability of the error signal and on the uncertainty of the motor system’s own state. These dependences are in agreement with the predictions of the Kalman filter, which is a state estimator that can be used to determine the optimal learning rate for each movement such that the expected movement error is minimized. Here we test whether not only the average behaviour is optimal, as the previous studies showed, but if the learning rate is chosen optimally in every individual movement. Subjects made repeated movements to visual targets with their unseen hand. They received visual feedback about their endpoint error immediately after each movement. The reliability of these error-signals was varied across three conditions. The results are inconsistent with the predictions of the Kalman filter because correction for large errors in the beginning of a series of movements to a fixed target was not as fast as predicted and the learning rates for the extent and the direction of the movements did not differ in the way predicted by the Kalman filter. Instead, a simpler model that uses the same learning rate for all movements with the same error-signal reliability can explain the data. We conclude that our brain does not apply state estimation to determine the optimal planning correction for every individual movement, but it employs a simpler strategy of using a fixed learning rate for all movements with the same level of error-signal reliability

    What autocorrelation tells us about motor variability: Insights from dart throwing

    Get PDF
    In sports such as golf and darts it is important that one can produce ballistic movements of an object towards a goal location with as little variability as possible. A factor that influences this variability is the extent to which motor planning is updated from movement to movement based on observed errors. Previous work has shown that for reaching movements, our motor system uses the learning rate (the proportion of an error that is corrected for in the planning of the next movement) that is optimal for minimizing the endpoint variability. Here we examined whether the learning rate is hard-wired and therefore automatically optimal, or whether it is optimized through experience. We compared the performance of experienced dart players and beginners in a dart task. A hallmark of the optimal learning rate is that the lag-1 autocorrelation of movement endpoints is zero. We found that the lag-1 autocorrelation of experienced dart players was near zero, implying a near-optimal learning rate, whereas it was negative for beginners, suggesting a larger than optimal learning rate. We conclude that learning rates for trial-by-trial motor learning are optimized through experience. This study also highlights the usefulness of the lag-1 autocorrelation as an index of performance in studying motor-skill learning

    How the required precision influences the way we intercept a moving object

    Get PDF
    Do people perform a given motor task differently if it is easy than if it is difficult? To find out, we asked subjects to intercept moving virtual targets by tapping on them with their fingers. We examined how their behaviour depended on the required precision. Everything about the task was the same on all trials except the extent to which the fingertip and target had to overlap for the target to be considered hit. The target disappeared with a sound if it was hit and deflected away from the fingertip if it was missed. In separate sessions, the required precision was varied from being quite lenient about the required overlap to being very demanding. Requiring a higher precision obviously decreased the number of targets that were hit, but it did not reduce the variability in where the subjects tapped with respect to the target. Requiring a higher precision reduced the systematic deviations from landing at the target centre and the lag-one autocorrelation in such deviations, presumably because subjects received information about smaller deviations from hitting the target centre. We found no evidence for lasting effects of training with a certain required precision. All the results can be reproduced with a model in which the precision of individual movements is independent of the required precision, and in which feedback associated with missing the target is used to reduce systematic errors. We conclude that people do not approach this motor task differently when it is easy than when it is difficult. © 2013 Springer-Verlag Berlin Heidelberg

    Saccadic Eye Movements Minimize the Consequences of Motor Noise

    Get PDF
    The durations and trajectories of our saccadic eye movements are remarkably stereotyped. We have no voluntary control over these properties but they are determined by the movement amplitude and, to a smaller extent, also by the movement direction and initial eye orientation. Here we show that the stereotyped durations and trajectories are optimal for minimizing the variability in saccade endpoints that is caused by motor noise. The optimal duration can be understood from the nature of the motor noise, which is a combination of signal-dependent noise favoring long durations, and constant noise, which prefers short durations. The different durations of horizontal vs. vertical and of centripetal vs. centrifugal saccades, and the somewhat surprising properties of saccades in oblique directions are also accurately predicted by the principle of minimizing movement variability. The simple and sensible principle of minimizing the consequences of motor noise thus explains the full stereotypy of saccadic eye movements. This suggests that saccades are so stereotyped because that is the best strategy to minimize movement errors for an open-loop motor system

    Self versus Environment Motion in Postural Control

    Get PDF
    To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results

    Detection and characterization of subvisible aggregates of monoclonal lgG in serum

    Get PDF
    To detect and characterize the aggregation of therapeutic monoclonal antibodies in undiluted biological fluids. Fluorescently labeled subvisible IgG aggregates formed by applying either heat stress or by pH-shift were investigated immediately after addition to human serum, and after 24 h. Unstressed and stressed IgG formulations were analyzed by fluorescence single particle tracking, confocal laser scanning microscopy and flow cytometry. Unstressed formulations remained free from subvisible aggregates in serum, whereas heat-stressed and pH-shift stressed formulations showed dissimilar aggregation behaviors. The aggregation profile of the heat-stressed formulation diluted in serum remained practically the same as the one diluted in buffer, even after the 24 h incubation period. The pH-shift stressed formulation had strikingly smaller and more numerous subvisible aggregates immediately after dilution in serum compared to buffer. These aggregates became noticeably larger in both diluents after 24 h, but in serum they appeared to be formed by other types of constituents than the labeled protein itself. These results show that subvisible therapeutic protein aggregates may undergo changes in number, type and size distribution upon contact with human serum. This emphasizes the importance of analytical strategies for monitoring aggregation in undiluted biological fluids

    Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making

    Get PDF
    In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context-or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper ('Observing the observer (II): deciding when to decide'), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
    corecore