42 research outputs found

    The hydrogenosomes of Psalteriomonas lanterna

    Get PDF
    Contains fulltext : 75716.pdf (publisher's version ) (Open Access) Contains fulltext : 75716.pdf (preprint version ) (Open Access

    The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus

    Get PDF
    Contains fulltext : 75729.pdf (publisher's version ) (Open Access)BACKGROUND: There are thousands of very diverse ciliate species from which only a handful mitochondrial genomes have been studied so far. These genomes are rather similar because the ciliates analysed (Tetrahymena spp. and Paramecium aurelia) are closely related. Here we study the mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus. These ciliates are only distantly related to Tetrahymena spp. and Paramecium aurelia, but more closely related to Nyctotherus ovalis, which possesses a hydrogenosomal (mitochondrial) genome. RESULTS: The linear mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus were sequenced and compared with the mitochondrial genomes of several Tetrahymena species, Paramecium aurelia and the partially sequenced mitochondrial genome of the anaerobic ciliate Nyctotherus ovalis. This study reports new features such as long 5'gene extensions of several mitochondrial genes, extremely long cox1 and cox2 open reading frames and a large repeat in the middle of the linear mitochondrial genome. The repeat separates the open reading frames into two blocks, each having a single direction of transcription, from the repeat towards the ends of the chromosome. Although the Euplotes mitochondrial gene content is almost identical to that of Paramecium and Tetrahymena, the order of the genes is completely different. In contrast, the 33273 bp (excluding the repeat region) piece of the mitochondrial genome that has been sequenced in both Euplotes species exhibits no difference in gene order. Unexpectedly, many of the mitochondrial genes of E. minuta encoding ribosomal proteins possess N-terminal extensions that are similar to mitochondrial targeting signals. CONCLUSION: The mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus are rather different from the previously studied genomes. Many genes are extended in size compared to mitochondrial genes from other sources

    Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella tundrae Strain T4

    Get PDF
    Methylocella tundrae T4T is a facultative aerobic methanotroph which was isolated from an acidic tundra wetland and possesses only a soluble methane monooxygenase. The complete genome, which includes two megaplasmids, was sequenced using a combination of Illumina and Nanopore technologies. One of the megaplasmids carries a propane monooxygenase gene cluster

    Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum

    Get PDF
    In pristine ombrotrophic Sphagnum-dominated peatland ecosystems nitrogen (N) is often a limiting nutrient, which is replenished by biological N-2 fixation and atmospheric N deposition. It is, however, unclear which impact long-term N deposition has on microbial N-2 fixing activity and diazotrophic diversity, and whether phosphorus (P) modulates the response. Therefore, we studied the impact of increased N deposition and N depletion on microbial N-2 fixation and diazotrophic diversity associated with the peat moss Sphagnum magellanicum, and their interaction with P availability.Nitrogenase activities of S. magellanicum-associated microorganisms were determined by acetylene reduction assays (ARA) and N-15(2) tracer methods on mosses from two geographically distinct locations with different N deposition histories, high or low N deposition, and in samples depleted in N (grown 3 years in the greenhouse) versus recent field samples. The short-term response to increased N deposition was tested for mosses differing in N and P fertilization histories. In addition, diversity of diazotrophic microorganisms was assessed by nifH gene amplicon sequencing of N-depleted mosses.We showed distinct and persistent differences in diazotrophic communities and their activities associated with S. magellanicum from sites with high versus low N deposition. Initially, diazotrophic activity was six times higher for the low N site. During incubation and repeated ARA, however, this activity strongly decreased, while it remained stable for the high N site. Activity for the high N site could not be increased by long-term experimental N deprivation. Short-term, experimental N application had an inhibitory effect on N-2 fixation for both sites, which was not observed in mosses with high indirect P availability.We conclude that although N deposition negatively affects N-2 fixation as also shown in previous studies, long-term effects of N deprivation on the diazotrophic activity and community are more complex. Furthermore, our results indicated that P availability might be an important factor in modulating the response of Sphagnum-associated diazotrophs to N deposition.</p

    Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    Get PDF
    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112 days, the enrichment consumed up to 0.4 mM NO2− per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature

    The Organellar Genome and Metabolic Potential of the Hydrogen-Producing Mitochondrion of Nyctotherus ovalis

    Get PDF
    It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria

    The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin

    Get PDF
    BACKGROUND: The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I. RESULTS: The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome. CONCLUSION: The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering

    Acetyl-4'-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency

    Get PDF
    CITATION: Di Meo, I., et al. 2017. Acetyl-4′-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency. Scientific Reports, 7:11260, doi:10.1038/s41598-017-11564-8.The original publication is available at https://www.nature.comCoenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4′-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.https://www.nature.com/articles/s41598-017-11564-8Publisher's versio
    corecore