153 research outputs found

    The influence of the vertical distribution of emissions on tropospheric chemistry

    Get PDF
    The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. The resulting tracer distributions are compared to those of a former simulation applying height dependent emissions. Although the differences between the two simulations in the free troposphere are small (less than 5%), large differences are present in polluted regions at the surface, in particular for NO<sub>x</sub> (more than 100%), CO (up to 30%) and non-methane hydrocarbons (up to 30%), whereas for OH the differences at the same locations are somewhat lower (15%). Global ozone formation is virtually unaffected by the choice of the vertical distribution of emissions. Nevertheless, local ozone changes can be up to 30%. Model results of both simulations are further compared to observations from field campaigns and to data from measurement stations

    A 1° x 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890-1990

    Get PDF
    An anthropogenic emissions data set has been constructed for CO2, CO, CH4, nonmethane volatile organic compounds, SO2, NOx, N2O, and NH3 spanning the period 1890–1990. The inventory is based on version 2.0 of the Emission Database for Global Atmospheric Research (EDGAR 2.0). In EDGAR the emissions are calculated per country and economic sector using an emission factor approach. Calculations of the emissions with 10 year intervals are based on historical activity statistics and selected emission factors. Historical activity data were derived from the Hundred Year Database for Integrated Environmental Assessments (1890–1990) supplemented with other data and our own estimates. Emission factors account for changes in economical and technological developments in the past. The calculated emissions on a country basis have been interpolated onto a 1°x1° grid. This consistent data set can be used in trend studies of tropospheric trace gases and in environmental assessments, for example, the analysis of historical contributions of regions and countries to environmental forcing like the enhanced greenhouse gas effect, acidification, and eutrofication. The database focuses on energy/industrial and agricultural/waste sources; for completeness, historical biomass-burning estimates where added using a simple and transparent approach. ? 2001 American Geophysical Unio

    Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Get PDF
    We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to -2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by -1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time

    Anthropogenic sulfur dioxide emissions: 1850–2005

    Get PDF
    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments

    The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    No full text
    International audienceThe new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998?2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request

    Technical Note: Anthropogenic and natural offline emissions and the online EMissions and dry DEPosition submodel EMDEP of the Modular Earth Submodel system (MESSy)

    Get PDF
    International audienceWe present the online calculated Earth's surface trace gas and aerosol emissions and dry deposition in the Modular Earth Submodel System (MESSy) submodel EMDEP as well as the currently applied anthropogenic and natural emissions inventories. These inventories, being read-in by the MESSy submodel OFFLEM, include the industrial, fossil fuel, agricultural and biomass burning emissions considering emission height profiles as a function of the source category based on the EDGAR v3.2 fast track 2000 inventory. Terrestrial and marine emissions of a selection of trace gases and aerosols are calculated online in EMDEP using climate model parameters such as wind speed, temperature and land cover and land use parameters. The online dry deposition calculation includes gases and aerosols, where the default selection for the trace gases for the dry deposition scheme can be easily extended using a commonly applied method based on trace gas solubility and reactivity. In general, the simulated global annual emissions agree with previously reported inventories, although differences exist, partly dependent on the applied model resolution. A high sensitivity of the simulated dry deposition to the applied emission height profiles stresses the importance of a realistic and consistent representation of the spatial and temporal variability in surface exchange processes in Earth system models

    Stationary Distribution and Eigenvalues for a de Bruijn Process

    Full text link
    We define a de Bruijn process with parameters n and L as a certain continuous-time Markov chain on the de Bruijn graph with words of length L over an n-letter alphabet as vertices. We determine explicitly its steady state distribution and its characteristic polynomial, which turns out to decompose into linear factors. In addition, we examine the stationary state of two specializations in detail. In the first one, the de Bruijn-Bernoulli process, this is a product measure. In the second one, the Skin-deep de Bruin process, the distribution has constant density but nontrivial correlation functions. The two point correlation function is determined using generating function techniques.Comment: Dedicated to Herb Wilf on the occasion of his 80th birthda

    The atmospheric chemistry general circultation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere

    Get PDF
    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on reques

    Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2

    Get PDF
    The new version of the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2) compiles gaseous and particulate air pollutant emissions, making use of the same anthropogenic sectors, time period (1970–2012), and international activity data that is used for estimating GHG emissions, as described in a companion paper (Janssens-Maenhout et al., 2017). All human activities, except large scale biomass burning and land use, land-use change, and forestry are included in the emissions calculation. The bottom-up compilation methodology of sector-specific emissions was applied consistently for all world countries, providing methodological transparency and comparability between countries. In addition to the activity data used to estimate GHG emissions, air pollutant emissions are determined by the process technology and end-of-pipe emission reduction abatements. Region-specific emission factors and abatement measures were selected from recent available scientific literature and reports. Compared to previous versions of EDGAR, the EDGAR v4.3.2 dataset covers all gaseous and particulate air pollutants, has extended time series (1970–2012), and has been evaluated with quality control and quality assurance (QC and QA) procedures both for the emission time series (e.g. particulate matter – PM – mass balance, gap-filling for missing data, the split-up of countries over time, few updates in the emission factors, etc.) and grid maps (full coverage of the world, complete mapping of EDGAR emissions with sector-specific proxies, etc.). This publication focuses on the gaseous air pollutants of CO, NOx, SO2, total non-methane volatile organic compounds (NMVOCs), NH3, and the aerosols PM10, PM2.5, black carbon (BC), and organic carbon (OC). Considering the 1970–2012 time period, global emissions of SO2 increased from 99 to 103&thinsp;Mt, CO from 441 to 562&thinsp;Mt, NOx from 68 to 122&thinsp;Mt, NMVOC from 119 to 170&thinsp;Mt, NH3 from 25 to 59&thinsp;Mt, PM10 from 37 to 65&thinsp;Mt, PM2.5 from 24 to 41&thinsp;Mt, BC from 2.7 to 4.5&thinsp;Mt, and OC from 9 to 11&thinsp;Mt. We present the country-specific emission totals and analyze the larger emitting countries (including the European Union) to provide insights on major sector contributions. In addition, per capita and per GDP emissions and implied emission factors – the apparent emissions per unit of production or energy consumption – are presented. We find that the implied emission factors (EFs) are higher for low-income countries compared to high-income countries, but in both cases decrease from 1970 to 2012. The comparison with other global inventories, such as the Hemispheric Transport of Air Pollution Inventory (HTAP v2.2) and the Community Emission Data System (CEDS), reveals insights on the uncertainties as well as the impact of data revisions (e.g. activity data, emission factors, etc.). As an additional metric, we analyze the emission ratios of some pollutants to CO2 (e.g. CO∕CO2, NOx∕CO2, NOx∕CO, and SO2∕CO2) by sector, region, and time to identify any decoupling of air pollutant emissions from energy production activities and to demonstrate the potential of such ratios to compare to satellite-derived emission data. Gridded emissions are also made available for the 1970–2012 historic time\ud series, disaggregated for 26 anthropogenic sectors using updated spatial proxies. The analysis of the evolution of hot spots over time allowed us to identify areas with growing emissions and where emissions should be constrained to improve global air quality (e.g. China, India, the Middle East, and some South American countries are often characterized by high emitting areas that are changing rapidly compared to Europe or the USA, where stable or decreasing emissions are evaluated). Sector- and component-specific contributions to grid-cell emissions may help the modelling and satellite communities to disaggregate atmospheric column amounts and concentrations into main emitting sectors. This work addresses not only the emission inventory and modelling communities, but also aims to broaden the usefulness of information available in a global emission inventory such as EDGAR to also include the measurement community. Data are publicly available online through the EDGAR website http://edgar.jrc.ec.europa.eu/overview.php?v=432_AP and registered under https://doi.org/10.2904/JRC_DATASET_EDGAR.</p
    • …
    corecore