2,264 research outputs found

    On Throughput for UAV Relay Assisted for Use in Disaster Communications

    Get PDF
    In this paper, the system performance of an energy harvesting (EH) unmanned aerial vehicle (UAV) system for use in disasters was investigated. The communication protocol was divided into two phases. In the first phase, a UAV relay (UR) harvested energy from a power beacon (PB). In the second phase, a base station (BS) transmitted the signal to the UR using non-orthogonal multiple access (NOMA); then, the UR used its harvested energy from the first phase to transfer the signal to two sensor clusters, i.e., low-priority and high-priority clusters, via the decode-and-forward (DF) technique. A closed-form expression for the throughput of the cluster heads of these clusters was derived to analyze the system performance. Monte Carlo simulations were employed to verify our approach

    A Review on Convective Boiling Heat Transfer of Refrigerants in Horizontal Microfin-Tubes: A Typical Example

    Get PDF
    Understanding the Heat transfer performance of refrigerant for convective boiling in horizontal microfin tube and smooth tube is place an importance role on the designing of evaporator, the main equipment on refrigeration system. Reviewing the general concept especially the theory of boiling in the tube, the formation of the flow pattern map, the calculating procedure for heat transfer coefficient and pressure drop during boiling process of refrigerant in microfin tube. Besides, a typical example will be presented more detail in step by step to define the heat transfer coefficient and pressure drop for one working condition to estimate the data results without doing experiments

    A Complete Method for Reconstructing an Elevation Surface of 3D Point Clouds

    Get PDF
    Reconstructing the surface of 3D point clouds is a reconstruction from a cloud of 3D points to a triangular mesh. This process approximates a discrete point cloud by a continuous/smooth surface depending on the input data and the applications of users. In this paper, we propose a complete method to reconstruct an elevation surface from 3D point clouds. The method consists of three steps. In the first step, we triangulate an elevation surface of 3D point cloud structured in a 3D grid. In the second step, we remove the outward triangles to deal with concave regions on the boundary of the triangular mesh. In the third step, we reconstruct this surface by filling the hole of triangular mesh. Our method could process very fast for triangulating the surface, preserve the topology and characteristic of the input surface after reconstruction

    Biocompatible chitosan-functionalized upconverting nanocomposites

    Get PDF
    Simultaneous integration of photon emission and biocompatibility into nanoparticles is an interesting strategy to develop applications of advanced optical materials. In this work, we present the synthesis of biocompatible optical nanocomposites from the combination of near-infrared luminescent lanthanide nanoparticles and water-soluble chitosan. NaYF4:Yb,Er upconverting nanocrystal guests and water-soluble chitosan hosts are prepared and integrated together into biofunctional optical composites. The control of aqueous dissolution, gelation, assembly, and drying of NaYF4:Yb,Er nanocolloids and chitosan liquids allowed us to design novel optical structures of spongelike aerogels and beadlike microspheres. Well-defined shape and near-infrared response lead upconverting nanocrystals to serve as photon converters to couple with plasmonic gold (Au) nanoparticles. Biocompatible chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites are prepared to show their potential use in biomedicine as we find them exhibiting a half-maximal effective concentration (EC50) of 0.58 mg mL–1 for chitosan-stabilized Au/NaYF4:Yb,Er nanorods versus 0.24 mg mL–1 for chitosan-stabilized NaYF4:Yb,Er after 24 h. As a result of their low cytotoxicity and upconverting response, these novel materials hold promise to be interesting for biomedicine, analytical sensing, and other applications

    PROBLEMS OF ENGLISH STUDIES STUDENTS ON LEARNING PHONOLOGY AND SUGGESTIONS, CAN THO UNIVERSITY, VIETNAM

    Get PDF
    The writers were concerned by the phonological challenges encountered by students of the Schools of Foreign Languages, Can Tho University. Foreign language majors are often difficult, and theory is quite tackled, which has caused many serious problems for students. This is no exception for students majoring in English Studies, at Can Tho University in the process of approaching the subject "Introduction to English Phonology". This study was conducted to clarify the phonological challenges that students at Can Tho University are facing, as well as suggest solutions to the problem of phonology learners. Using data from Google Questionnaire Forms, the research conducted an error analysis of 103 English majors who studied the subject. Based on the phonological problems, certain remedial activities were planned for the students, which helped improve their study process phonological problems considerably.   Article visualizations

    Secondary Network Throughput Optimization of NOMA Cognitive Radio Networks Under Power and Secure Constraints

    Get PDF
    Recently, the combination of cognitive radio networks with the nonorthogonal multiple access (NOMA) approach has emerged as a viable option for not only improving spectrum usage but also supporting large numbers of wireless communication connections. However, cognitive NOMA networks are unstable and vulnerable because multiple devices operate on the same frequency band. To overcome this drawback, many techniques have been proposed, such as optimal power allocation and interference cancellation. In this paper, we consider an approach by which the secondary transmitter (STx) is able to find the best licensed channel to send its confidential message to the secondary receivers (SRxs) by using the NOMA technique. To combat eavesdroppers and achieve reasonable performance, a power allocation policy that satisfies both the outage probability (OP) constraint of primary users and the security constraint of secondary users is optimized. The closed-form formulas for the OP at the primary base station and the leakage probability for the eavesdropper are obtained with imperfect channel state information. Furthermore, the throughput of the secondary network is analyzed to evaluate the system performance. Based on that, two algorithms (i.e., the continuous genetic algorithm (CGA) for CR NOMA (CGA-CRN) and particle swarm optimization (PSO) for CR NOMA (PSO-CRN)), are applied to optimize the throughput of the secondary network. These optimization algorithms guarantee not only the performance of the primary users but also the security constraints of the secondary users. Finally, simulations are presented to validate our research results and provide insights into how various factors affect system performance
    • …
    corecore