14 research outputs found

    Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial

    Get PDF
    BACKGROUND There are limited data from randomized trials regarding whether volume-based, low-dose computed tomographic (CT) screening can reduce lung-cancer mortality among male former and current smokers. METHODS A total of 13,195 men (primary analysis) and 2594 women (subgroup analyses) between the ages of 50 and 74 were randomly assigned to undergo CT screening at T0 (baseline), year 1, year 3, and year 5.5 or no screening. We obtained data on cancer diagnosis and the date and cause of death through linkages with national registries in the Netherlands and Belgium, and a review committee confirmed lung cancer as the cause of death when possible. A minimum follow-up of 10 years until December 31, 2015, was completed for all participants. RESULTS Among men, the average adherence to CT screening was 90.0%. On average, 9.2% of the screened participants underwent at least one additional CT scan (initially indeterminate). The overall referral rate for suspicious nodules was 2.1%. At 10 years of follow-up, the incidence of lung cancer was 5.58 cases per 1000 personyears in the screening group and 4.91 cases per 1000 person-years in the control group; lung-cancer mortality was 2.50 deaths per 1000 person-years and 3.30 deaths per 1000 person-years, respectively. The cumulative rate ratio for death from lung cancer at 10 years was 0.76 (95% confidence interval [CI], 0.61 to 0.94; P = 0.01) in the screening group as compared with the control group, similar to the values at years 8 and 9. Among women, the rate ratio was 0.67 (95% CI, 0.38 to 1.14) at 10 years of follow-up, with values of 0.41 to 0.52 in years 7 through 9. CONCLUSIONS In this trial involving high-risk persons, lung-cancer mortality was significantly lower among those who underwent volume CT screening than among those who underwent no screening. There were low rates of follow-up procedures for results suggestive of lung cancer. (Funded by the Netherlands Organization of Health Research and Development and others; NELSON Netherlands Trial Register number, NL580.)

    Social Cognition in Autism and Other Neurodevelopmental Disorders : A Co-twin Control Study

    No full text
    Alterations in social cognition (SC) are hypothesized to underlie social communication and interaction challenges in autism spectrum disorder (ASD). The aetiological underpinnings driving this association remain unclear. We examined SC in 196 twins with ASD, other neurodevelopmental disorders or typical development using the naturalistic Movie for the Assessment of Social Cognition. Autism and its severity were assessed with the Autism Diagnostic Observation Schedule-2, and autistic traits with the Social Responsiveness Scale-2. Using within twin-pair regression models, controlling for age, sex, IQ, and unmeasured familial confounders such as genetic background and shared-environment, SC correlated with ASD diagnosis, autism severity, and autistic traits. Our findings highlight the importance of SC alterations in autism and suggest a non-shared environmental impact on the association

    Single dose partial breast irradiation using an MRI linear accelerator in the supine and prone treatment position

    No full text
    Background: In selected patients with early-stage and low-risk breast cancer, an MRI-linac based treatment might enable a radiosurgical, non-invasive alternative for current standard breast conserving therapy. Aim: To investigate whether single dose accelerated partial breast (APBI) to the intact tumor in both the prone and supine radiotherapy positions on the MRI-linac is dosimetrically feasible with respect to predefined coverage and organs at risk (OAR) constraints. Material & methods: For 20 patients with cTis or low-risk cT1N0M0 non-lobular breast carcinoma, previously treated with single dose preoperative APBI in the supine (n = 10) or prone (n = 10) position, additional intensity modulated radiotherapy plans with 7 coplanar beams in the presence of a 1.5T magnetic field were generated. A 20 Gy and 15 Gy dose was prescribed to the gross tumor and clinical target volume, respectively. The percentage of plans achieving predefined organ at risk (OAR) constraints, currently used in clinical practice, was assessed. Dosimetry differences between the prone versus supine approach and the MRI-linac versus clinically delivered plans were evaluated. Results: All MRI-linac plans met the coverage and predefined OAR constraints. The prone approach appeared to be more favorable with respect to the chest wall, and ipsilateral lung dose compared to the supine position. No dosimetric differences were observed for the ipsilateral breast. No treatment position was clearly more beneficial for the skin or heart, since dosimetry varied among parameters. Overall, the MRI-linac and clinical plans were comparable, with minor absolute dosimetric differences. Conclusion: MRI-linac based single dose APBI to the intact tumor is a promising and a dosimetrically feasible strategy in patients with low-risk breast cancer. Preliminary OAR dosimetry favored the prone radiotherapy position

    Single dose partial breast irradiation using an MRI linear accelerator in the supine and prone treatment position

    No full text
    Background: In selected patients with early-stage and low-risk breast cancer, an MRI-linac based treatment might enable a radiosurgical, non-invasive alternative for current standard breast conserving therapy. Aim: To investigate whether single dose accelerated partial breast (APBI) to the intact tumor in both the prone and supine radiotherapy positions on the MRI-linac is dosimetrically feasible with respect to predefined coverage and organs at risk (OAR) constraints. Material & methods: For 20 patients with cTis or low-risk cT1N0M0 non-lobular breast carcinoma, previously treated with single dose preoperative APBI in the supine (n = 10) or prone (n = 10) position, additional intensity modulated radiotherapy plans with 7 coplanar beams in the presence of a 1.5T magnetic field were generated. A 20 Gy and 15 Gy dose was prescribed to the gross tumor and clinical target volume, respectively. The percentage of plans achieving predefined organ at risk (OAR) constraints, currently used in clinical practice, was assessed. Dosimetry differences between the prone versus supine approach and the MRI-linac versus clinically delivered plans were evaluated. Results: All MRI-linac plans met the coverage and predefined OAR constraints. The prone approach appeared to be more favorable with respect to the chest wall, and ipsilateral lung dose compared to the supine position. No dosimetric differences were observed for the ipsilateral breast. No treatment position was clearly more beneficial for the skin or heart, since dosimetry varied among parameters. Overall, the MRI-linac and clinical plans were comparable, with minor absolute dosimetric differences. Conclusion: MRI-linac based single dose APBI to the intact tumor is a promising and a dosimetrically feasible strategy in patients with low-risk breast cancer. Preliminary OAR dosimetry favored the prone radiotherapy position

    Autoantibody Profiling for Lung Cancer Screening Longitudinal Retrospective Analysis of CT Screening Cohorts

    Get PDF
    Recommendations for lung cancer screening present a tangible opportunity to integrate predictive blood-based assays with radiographic imaging. This study compares performance of autoantibody markers from prior discovery in sample cohorts from two CT screening trials. One-hundred eighty non-cancer and 6 prevalence and 44 incidence cancer cases detected in the Mayo Lung Screening Trial were tested using a panel of six autoantibody markers to define a normal range and assign cutoff values for class prediction. A cutoff for minimal specificity and best achievable sensitivity were applied to 256 samples drawn annually for three years from 95 participants in the Kentucky Lung Screening Trial. Data revealed a discrepancy in quantile distribution between the two apparently comparable sample sets, which skewed the assay’s dynamic range towards specificity. This cutoff offered 43% specificity (102/237) in the control group and accurately classified 11/19 lung cancer samples (58%), which included 4/5 cancers at time of radiographic detection (80%), and 50% of occult cancers up to five years prior to diagnosis. An apparent ceiling in assay sensitivity is likely to limit the utility of this assay in a conventional screening paradigm. Pre-analytical bias introduced by sample age, handling or storage remains a practical concern during development, validation and implementation of autoantibody assays. This report does not draw conclusions about other logical applications for autoantibody profiling in lung cancer diagnosis and management, nor its potential when combined with other biomarkers that might improve overall predictive accuracy
    corecore