6 research outputs found

    An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer's disease

    Get PDF
    Mutations leading to premature termination codons in ATP-Binding Cassette Subfamily A Member 7 (ABCA7) are high penetrant risk factors of Alzheimer's disease (AD). The influence of other genetic variants in ABCA7 and downstream functional mechanisms, however, is poorly understood. To address this knowledge gap, we investigated tandem repetitive regions in ABCA7 in a Belgian cohort of 1529 AD patients and control individuals and identified an intronic variable number tandem repeat (VNTR). We observed strong association between VNTR length and a genome-wide associated signal for AD in the ABCA7 locus. Expanded VNTR alleles were highly enriched in AD patients [odds ratio = 4.5 (1.3-24.2)], and VNTR length inversely correlated with amyloid beta(1-42) in cerebrospinal fluid and ABCA7 expression. In addition, we identified three novel ABCA7 alternative splicing events. One isoform in particular-which is formed through exon 19 skipping-lacks the first nucleotide binding domain of ABCA7 and is abundant in brain tissue. We observed a tight correlation between exon 19 skipping and VNTR length. Our findings underline the importance of studying repetitive DNA in complex disorders and expand the contribution of genetic and transcript variation in ABCA7 to AD

    No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients

    Get PDF
    We evaluated the genetic contribution of the T cell-erestricted intracellular antigen-1 gene (TIA1) in a European cohort of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Exonic resequencing of TIA1 in 1120 patients (693 FTD, 341 ALS, 86 FTD-ALS) and 1039 controls identified in total 5 rare heterozygous missense variants, affecting the TIA1 low-complexity domain (LCD). Only 1 missense variant, p.Met290Thr, identified in a familial FTD patient with disease onset at 64 years, was absent from controls yet received a combined annotation-dependent depletion score of 11.42. By contrast, 3 of the 4 variants also detected in unaffected controls, p.Val294Glu, p.Gln318Arg, and p.Ala381Thr, had combined annotation-dependent depletion scores greater than 20. Our findings in a large European patient-control series indicate that variants in TIA1 are not a common cause of ALS and FTD. The observation of recurring TIA1 missense variants in unaffected individuals lead us to conclude that the exact genetic contribution of TIA1 to ALS and FTD pathogenesis remains to be further elucidated

    Amyloid-<tex>\beta_{1-43}$</tex> cerebrospinal fluid levels and the interpretation of APP, PSEN1 and PSEN2 mutations

    Get PDF
    Background Alzheimer's disease (AD) mutations in amyloid precursor protein (APP) and presenilins (PSENs) could potentially lead to the production of longer amyloidogenic A beta peptides. Amongst these, A beta(1-43)is more prone to aggregation and has higher toxic properties than the long-known A beta(1-42). However, a direct effect on A beta(1-43)in biomaterials of individuals carrying genetic mutations in the known AD genes is yet to be determined. Methods N = 1431 AD patients (n = 280 early-onset (EO) andn = 1151 late-onset (LO) AD) and 809 control individuals were genetically screened forAPPandPSENs. For the first time, A beta(1-43)levels were analysed in cerebrospinal fluid (CSF) of 38 individuals carrying pathogenic or unclear rare mutations or the commonPSEN1p.E318G variant and compared with A beta(1-42)and A beta 1-40CSF levels. The soluble sAPP alpha and sAPP beta species were also measured for the first time in mutation carriers. Results A known pathogenic mutation was identified in 5.7% of EOAD patients (4.6%PSEN1, 1.07%APP) and in 0.3% of LOAD patients. Furthermore, 12 known variants with unclear pathogenicity and 11 novel were identified. Pathogenic and unclear mutation carriers showed a significant reduction in CSF A beta(1-43)levels compared to controls (p = 0.037; < 0.001). CSF A beta(1-43)levels positively correlated with CSF A beta(1-42)in both pathogenic and unclear carriers and controls (allp < 0.001). The p.E318G carriers showed reduced A beta(1-43)levels (p < 0.001), though genetic association with AD was not detected. sAPP alpha and sAPP beta CSF levels were significantly reduced in the group of unclear (p = 0.006; 0.005) and p.E318G carriers (p = 0.004; 0.039), suggesting their possible involvement in AD. Finally, using A beta(1-43)and A beta(1-42)levels, we could re-classify as "likely pathogenic" 3 of the unclear mutations. Conclusion This is the first time that A beta(1-43)levels were analysed in CSF of AD patients with genetic mutations in the AD causal genes. The observed reduction of A beta(1-43)inAPPandPSENscarriers highlights the pathogenic role of longer A beta peptides in AD pathogenesis. Alterations in A beta(1-43)could prove useful in understanding the pathogenicity of unclearAPPandPSENsvariants, a critical step towards a more efficient genetic counselling

    Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia

    No full text
    Homozygous mutations in exon 2 of TREM2, a gene involved in Nasu-Hakola disease, can cause frontotemporal dementia (FTD). Moreover, a rare TREM2 exon 2 variant (p.R47H) was reported to increase the risk of Alzheimer's disease (AD) with an odds ratio as strong as that for APOE epsilon 4. We systematically screened the TREM2 coding region within a Belgian study on neurodegenerative brain diseases (1216 AD patients, 357 FTD patients, and 1094 controls). We observed an enrichment of rare variants across TREM2 in both AD and FTD patients compared to controls, most notably in the extracellular IgV-set domain (relative risk = 3.84 [95% confidence interval = 1.29-11.44]; p = 0.009 for AD; relative risk = 6.19 [95% confidence interval = 1.86-20.61]; p = 0.0007 for FTD). None of the rare variants individually reached significant association, but the frequency of p.R47H was increased similar to 3-fold in both AD and FTD patients compared to controls, in line with previous reports. Meta-analysis including 11 previously screened AD cohorts confirmed the association of p.R47H with AD (p = 2.93 x 10(-17)). Our data corroborate and extend previous findings to include an increased frequency of rare heterozygous TREM2 variations in AD and FTD, and show that TREM2 variants may play a role in neurodegenerative diseases in general. (C) 2014 Elsevier Inc. All rights reserved

    Clinical features of TBK1 carriers compared with C9orf72, GRN and non-mutation carriers in a Belgian cohort

    Get PDF
    We identified in a cohort of patients with frontotemporal dementia (n = 481) or amyotrophic lateral sclerosis (n = 147), 10 index patients carrying a TBK1 loss of function mutation reducing TBK1 expression by 50%. Here, we describe the clinical and pathological characteristics of the 10 index patients and six of their affected relatives carrying a TBK1 mutation. Six TBK1 carriers were diagnosed with frontotemporal dementia, seven with amyotrophic lateral sclerosis, one with both clinical phenotypes and two with dementia unspecified. The mean age at onset of all 16 TBK1 carriers was 62.1 +/- 8.9 years (range 41-73) with a mean disease duration of 4.7 +/- 4.5 years (range 1-13). TBK1 carriers with amyotrophic lateral sclerosis had shorter disease duration than carriers with frontotemporal dementia. Six of seven TBK1 carriers were diagnosed with the behavioural variant of frontotemporal dementia, presenting predominantly as disinhibition. Memory loss was an important associated symptom in the initial phase of the disease in all but one of the carriers with frontotemporal dementia. Three of the patients with amyotrophic lateral sclerosis exhibited pronounced upper motor neuron symptoms. Overall, neuroimaging displayed widespread atrophy, both symmetric and asymmetric. Brain perfusion single-photon emission computed tomography or fluorodeoxyglucose-positron emission tomography showed asymmetric and predominantly frontotemporal involvement. Neuropathology in two patients demonstrated TDP-43 type B pathology. Further, we compared genotype-phenotype data of TBK1 carriers with frontotemporal dementia (n = 7), with those of frontotemporal dementia patients with a C9orf72 repeat expansion (n = 65) or a GRN mutation (n = 52) and with frontotemporal dementia patients (n = 259) negative for mutations in currently known causal genes. TBK1 carriers with frontotemporal dementia had a later age at onset (63.3 years) than C9orf72 carriers (54.3 years) (P = 0.019). In clear contrast with TBK1 carriers, GRN carriers were more often diagnosed with the language variant than the behavioural variant, and presented in case of the diagnosis of behavioural variant, more often than TBK1 carriers with apathy as the predominant characteristic (P = 0.004). Also, TBK1 carriers exhibited more often extrapyramidal symptoms than C9orf72 carriers (P = 0.038). In conclusion, our study identified clinical differences between the TBK1, C9orf72 and GRN carriers, which allows us to formulate guidelines for genetic diagnosis. After a negative result for C9orf72, patients with both frontotemporal dementia and amyotrophic lateral sclerosis should be tested first for mutations in TBK1. Specifically in frontotemporal dementia patients with early memory difficulties, a relatively late age at onset or extrapyramidal symptoms, screening for TBK1 mutations should be considered

    The Irresistible Owl

    Get PDF
    TANK-binding kinase 1 (TBK1) loss-of-function (LoF) mutations are known to cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), often combined with memory deficits early in the disease course. We performed targeted resequencing of TBK1 in 1253 early onset Alzheimer's disease (EOAD) patients from 8 European countries to investigate whether pathogenic TBK1 mutations are enriched among patients with clinical diagnosis of EOAD. Variant frequencies were compared against 2117 origin-matched controls. We identified only 1 LoF mutation (p.Thr79del) in a patient clinically diagnosed with Alzheimer's disease and a positive family history of ALS. We did not observe enrichment of rare variants in EOAD patients compared to controls, nor of rare variants affecting NFκB induction. Of 3 common coding variants, rs7486100 showed evidence of association (OR 1.46 [95% CI 1.13–1.9]; p-value 0.01). Homozygous carriers of the risk allele showed reduced expression of TBK1 (p-value 0.03). Our findings are not indicative of a significant role for TBK1 mutations in EOAD. The association between common variants in TBK1, disease risk and reduced TBK1 expression warrants follow-up in FTD/ALS cohorts. © 2017 The Author(s
    corecore