32 research outputs found

    Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice

    Get PDF
    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min) restraint stress conditions. On a circular hole board (CHB) task, about half of the naive female mice used spatial and stimulus-response strategies to solve the task. Under stress, female mice favored spatial over stimulus-response strategies, with 100% of female mice in the estrus phase. Performance expressed as latency to solve the task is only improved in stressed female mice in the estrus phase. We conclude that the use of learning strategies is influenced by sex and this difference between sexes is aggravated by acute stress

    Mineralocorticoid receptors guide spatial and stimulus-response learning in mice

    Get PDF
    Contains fulltext : 135969.pdf (publisher's version ) (Open Access)Adrenal corticosteroid hormones act via mineralocorticoid (MR) and glucocorticoid receptors (GR) in the brain, influencing learning and memory. MRs have been implicated in the initial behavioral response in novel situations, which includes behavioral strategies in learning tasks. Different strategies can be used to solve navigational tasks, for example hippocampus-dependent spatial or striatum-dependent stimulus-response strategies. Previous studies suggested that MRs are involved in spatial learning and induce a shift between learning strategies when animals are allowed a choice between both strategies. In the present study, we further explored the role of MRs in spatial and stimulus-response learning in two separate circular holeboard tasks using female mice with forebrain-specific MR deficiency and MR overexpression and their wildtype control littermates. In addition, we studied sex-specific effects using male and female MR-deficient mice. First, we found that MR-deficient compared to control littermates and MR-overexpressing mice display altered exploratory and searching behavior indicative of impaired acquisition of novel information. Second, female (but not male) MR-deficient mice were impaired in the spatial task, while MR-overexpressing female mice showed improved performance in the spatial task. Third, MR-deficient mice were also impaired in the stimulus-response task compared to controls and (in the case of females) MR-overexpressing mice. We conclude that MRs are important for coordinating the processing of information relevant for spatial as well as stimulus-response learning

    Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice

    Get PDF
    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min) restraint stress conditions. On a circular hole board (CHB) task, about half of the naive female mice used spatial and stimulus-response strategies to solve the task. Under stress, female mice favored spatial over stimulus-response strategies, with 100% of female mice in the estrus phase. Performance expressed as latency to solve the task is only improved in stressed female mice in the estrus phase. We conclude that the use of learning strategies is influenced by sex and this difference between sexes is aggravated by acute stress

    Stress or no stress: Mineralocorticoid receptors in the forebrain regulate behavioral adaptation

    No full text
    Corticosteroid effects on cognitive abilities during behavioral adaptation to stress are mediated by two types of receptors. While the glucocorticoid receptor (GR) is mainly involved in the consolidation of memory, the mineralocorticoid receptor (MR) mediates appraisal and initial responses to novelty. Recent findings in humans and mice suggest that under stress, the MR might be involved in the use of different learning strategies. Here, we used male mice lacking the MR in the forebrain (MRCaMKCre), which were subjected to 5-10 min acute restraint stress, followed 30 min later by training trials on the circular hole board. Mice had to locate an exit hole using extra- and intra-maze cues. We assessed performance and the use of spatial and stimulus-response strategies. Non-stressed MRCaMKCre mice showed delayed learning as compared to control littermates. Prior stress impaired performance in controls, but did not further deteriorate learning in MRCamKCre mice. When stressed, 20-30% of both MRCaMKCre and control mice switched from a spatial to a stimulus-response strategy, which rescued performance in MRCaMKCre mice. Furthermore, MRCaMKCre mice showed increased GR mRNA expression in all CA areas of the hippocampus and an altered basal and stress-induced corticosterone secretion, which supports their role in the modulation of neuroendocrine activity. In conclusion, our data provide evidence for the critical role of MR in the fast formation of spatial memory. In the absence of forebrain MR spatial learning performance was under basal circumstances impaired, while after stress further deterioration of performance was rescued by switching behavior increasingly to a stimulus-response strategy. (C) 2012 Elsevier Inc. All rights reserved.Diabetes mellitus: pathophysiological changes and therap
    corecore