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Highlights:  

- There is a sex difference in the use of learning strategies 

- Stress induces a switch from stimulus-response towards spatial strategy in female mice 

- Stressed estrus females rescue their performance by switching to a spatial learning strategy
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Abstract 

Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to 

more stimulus-response learning.  To study generalization of these findings over sex, we investigated 

female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min) 

restraint stress conditions. On a circular hole board (CHB) task, about half of the naive female mice 

used spatial and stimulus-response strategies to solve the task. Under stress, female mice favored 

spatial over stimulus-response strategies, with 100 % of female mice in the estrus phase. Performance 

expressed as latency to solve the task is only improved in stressed female mice in the estrus phase.  

We conclude that the use of learning strategies is influenced by sex and this difference between sexes 

is aggravated by acute stress.     
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Intro 

Multiple memory systems run in parallel when accessing the same information but differ in their mode 

of action and the underlying neuronal networks [1]. For example, to solve a learning task animals can 

either use a spatial or stimulus-response (S-R) strategy. These two strategies originate in different 

parts of the brain. Spatial memory involves the use of multiple stimuli and relies on the hippocampus 

[1, 2], whereas S-R memory depends on a single stimulus and is based on the caudate nucleus [3]. 

Male mice and rats seem to prefer the use of a spatial strategy [4-7], while females apply both 

strategies [6-8].  

In response to stress, strategy preference of male mice and rats switches from spatial towards 

more S-R learning [Schwabe et al., 2010a; Schwabe et al., 2008; Kim & Baxter, 2001), thereby 

rescuing their performance [Schwabe et al., 2010a; Schwabe et al., 2008). The effect of stress on 

strategy use of female mice has not been investigated so far. The strategy of females during stress is of 

interest because of their higher basal and stress-induced corticosterone concentrations [9-14] than 
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observed in male rats. In addition, in multiple learning paradigms females behave differently during 

naive and in stressful situations compared to males [15]. In the present study, we assessed which 

strategy female mice use under normal and stress conditions and how stress does influence their 

performance. Here, we report that stressed females switch towards the use of a spatial strategy and 

improve their performance, but only when in the estrus phase.  

 

Materials and Methods 

The present study was designed to assess qualitative (strategy: spatial, stimulus response) and 

quantitative (performance expressed e.g., as latency) characteristics of the behavior of female 

C57BL/6J mice. Mice received acute restraint stress 30 minutes before training, and their phase of the 

estrous cycle was determined. Twenty-eight naive and 28 stressed female C57BL/6J mice (Janvier, 

France), approximately 5 months of age, were either subjected to the restraint stressor or not (n = 28 

per condition) and observed on the circular hole board (CHB) [4, 16] 17]. Mice were housed 

individually in Macrolon cages one week before the start of the experiment (translucent plastic: 44 x 

22 x 17 cm) with sawdust bedding, a tissue for nest building, water and food ad libitum, with 

controlled humidity on a 12h:12h light/dark cycle. Experiments were approved by the committee on 

Animal Health and Care from Leiden University, The Netherlands, in accordance with the EC Council 

Directive of November 1986 (86/609/EEC). 

The CHB is a revolvable grey round plate (Plexiglas, 110 cm in diameter, situated 1 m about the floor) 

with 12 holes at equal distances from each other, 10 cm from the rim of the board.  Holes are 5 cm in 

diameter and can be closed by a lid at a depth of 5 cm. If open, the hole is the exit to the animal’s 

home cage via an S-shaped tunnel (15 cm long; 5 cm diameter). Numerous cues in the room allow 

spatial orientation. Procedure: First, mice were “pretrained” to climb through the tunnel. One week 

before the first training trial, mice were placed on the CHB for a 5 min free exploration trial (FET). All 

holes were covered with a lid. A transparent 0.5 l. plastic bottle filled with water stood next to the hole 

that was opened at the end of the exploration trial. The FET served to estimate possible differences in 

movement pattern of the mice, that might be influenced by the estrous cycle. No differences were 
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found. Each training trial started by placing the mouse in a grey cylinder, which was located at the 

center of the board. After 5 sec, the cylinder was lifted and the animal could explore the board and exit 

through the tunnel. If a mouse did not enter the exit hole within 120 sec, it was gently guided there by 

the experimenter along a grid. The board was cleaned after each trial with 1% acetic acid solution and 

turned clockwise until another hole was at the location of the exit to avoid an influence of odor cues. 

The home cage was placed under the exit hole but was not visible for the mouse on the board. During 

six training trials, the position of the exit hole was fixed with respect to the distant extra-maze cues in 

the room. Also, the proximal intra-maze cue (the bottle) was placed next to this exit hole in all six 

training trials.  

The test-trial was used to detect the learning strategy. The hole of the training remained open, but the 

bottle was relocated to an additional exit hole opposite to the training position. The use of either S-R 

or spatial strategies is defined by the exit that is used: leaving the board through the exit of the training 

shows the use of a spatial strategy. Using the hole at the novel location, next to the bottle, reflects the 

use of a S-R strategy. To control for possible odor cues, we divided the bedding of the home cage of 

the mouse over two cages placed under both exit holes.   

Thirty minutes before the first training trial mice were stressed by immobilization for 10 min in a 

narrow cylinder that still allowed breathing but no further movement. Immobilization was performed 

in a room adjacent to the experiment room. Mice returned to the experimental room and remained for 

20 min in their home cage, before training started.  

Vaginal smears were taken twice: after the FET and after the training. The mouse was placed on top of 

its cage, the tail was lifted slightly and a small smear loop (1 µl; Greiner Bio-one) was gently inserted 

above the major labia in the cloaca and carefully rubbed along the ventral / rostral side of the cloaca. 

Cells were transferred to a drop of water on a microscope glass slide. Slides were air-dried and stained 

with Giemsa (Sigma) to facilitate identification of the cycle stage. The four stages are proestrus, 

estrus, metestrus and diestrus (Figure 1). We did not encounter the metestrus phase so therefore it is 

not included in this study.  
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Behavior was digitally recorded and analyzed with Ethovision XT 6.1 (Noldus). Statistical analyses 

were performed with SPSS 17.0 including chi-square and GLM repeated measures.  

 

Results 

Performance: Female mice learned the CHB task.  Latency of first visit to exit hole significantly 

decreased over the course of trials (F(5,135)4.45 p=0.001; Figure 2). Stressed mice had similar 

latencies as naive mice (F(1,54)0.093 p = 0.762). The phase of the estrous cycle did not affect the 

performance of stressed and naive mice (latency to exit hole: naive F(2,25)0.187 p = 0.831, stressed 

F(2,25)2.508 p = 0.102).  

Strategy: Naive mice applied either the spatial (57%) or the S-R strategy (43%) to locate the exit hole, 

while  stressed mice showed a significant switch towards more spatial learning strategies (χ2(1)5.6 p = 

0.018; 86 % spatial, 14 % S-R). Sub-grouping the mice according to their estrous phase (which had 

been determined after the last training trial) revealed no effect of estrous phases in naive mice 

(χ2(2)1.197 p = 0.55; Figure 3).  The stress-induced increase in spatial over S-R strategies tended to be 

higher in the three phases of the estrous cycle. Although all mice in estrus used the spatial strategy, 

this was not statistically different from the stressed mice in pro- en diestrus (χ2(2)4.407 p = 0.110). 

However, the stressed mice in estrus used significantly more often the spatial strategy than their naive 

counterparts (χ2(1)9.579 p = 0.003). 

Test trial: Latency of first visit to exit hole in the test trial were comparable to trial 6 and did not differ 

between naive and stressed mice (t(54)1.229 p = 0.224). The latency of first visit of exit hole and the 

speed during the test trial were not influenced by either stress nor estrous cycle (estrous x stress: 

F(2,50) 0.494 p = 0.613; F(2,50) 0.013 p = 0.987, respectively).  

Performance and strategy: The stress-induced switch towards a spatial strategy in estrus female mice 

was paralleled by shorter latencies for the first visit to the exit hole, specifically in the latter part of the 

training (trials 3 to 6: F(1,24)6.403 p=0.018; Figure 2B).   
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Discussion 

Female C57BL/6J mice used either stimulus-response or spatial strategies to solve a task that allows 

the use of proximal and distal stimuli. However after acute stress, spatial strategies were favored over 

stimulus response in all estrus phases. During estrus, all mice used the spatial strategy, which was 

paralleled by shorter latencies to exit, which is indicative for an improved performance.    

Strategy: The design of our circular holeboard task allowed to identify the use of spatial and S-R  

strategies in mice. Half of the naive female mice used spatial as well as S-R strategies. This is in 

contrast to male C57BL/6J mice that all used spatial strategies [4, 17]. This clear-cut sex difference 

was further extended to learning strategies under acute stress. Stressed females increasingly used a 

spatial strategy on the CHB task, whereas stressed male mice switched towards a S-R strategy [4, 5, 

16]. Our results are supported by previous findings that naive females have no preference for either of 

the two strategies. On a plus maze female rats were reported to use either a place strategy (spatial 

navigation) or a response strategy (S-R navigation) [6]. In addition, on a ladder-rewarded plus maze 

female mice did use intra-maze and extra-maze cues while male mice mainly employed extra-maze 

cues, implying a spatial strategy [7]. Strategy use, therefore, seems to be sex specific.  

Does the estrous cycle have an effect on strategy use on the CHB? Here, we observed no 

significant interference of the estrous cycle on strategy use, neither in naive nor stressed females. 

However, stress did induce a switch towards the spatial strategy in estrus female mice; all stressed 

mice in estrus used the spatial strategy. It should be taken into account however, that behavior of 

female mice and rats depends on several factors, such as the type of learning task (complex or simple, 

emotional or cognitive), phase of the task (acquisition or memory retrieval), the type of stressor and 

the estrous cycle phase [15]. The adversity of a task influences the task-inherent activation of the stress 

system and concurrently also emotionality. For example, estradiol did not influence strategy choice in 

a water maze task in ovariectomized rats [18]. However, after exposure to a water-based T-maze task a 

preference for spatial strategies has been reported in proestrus rats during the memory test [6] and also 

after extensive training on a dry T-maze task [19].  
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Rats deprived of estrogen by ovariectomy perform better in S-R tasks than in spatial tasks 

[20]. Moreover, injection of estradiol into the hippocampus enhanced spatial learning whereas 

injection of estradiol into the striatum impaired response learning [21]. Acute stress was reported to 

increase estrogen levels in female rats [22]. Therefore one explanation of these findings could be that a 

stress-induced increase in estrogen levels might have facilitated the estrus mice switch towards a 

spatial strategy. We found one human study that specifically tested the effect of stress on learning 

strategy in women. In support of our findings, high cortisol levels increased the number of women that 

switched from S-R to a spatial strategy [23]. Other studies with men and women did not report sex 

differences, neither for basal nor for the stress-induced switch of learning strategies [5, 24].  The lack 

of a sex-dependent effect might be related to the number of participants and also to the use of oral 

contraceptives. Clearly, the interaction of stress and sex hormones plays a role in the switching of the 

choice of learning strategy. 

The phase of the estrous cycle influences learning in a task-dependent fashion. Tasks that 

require a functional hippocampus such as trace eyeblink conditioning showed improved learning 

during the proestrus [25-27], while studies using spatial learning tasks, reported impairments in 

learning during the proestrus phase on the radial arm maze [28] or during the estrus phase in the 

Morris water maze [29, 30]. We detected no effect of the estrous cycle phase on the learning of the 

CHB in mice. It is conceivable therefore that the following two factors could play a role: (i) the 

training schedule, i.e., several training trials on one day in the present study compared with extensive 

training trials and training over days in the studies mentioned above and (ii) the involvement of other 

brain regions than the hippocampus.  

As we have demonstrated previously, mice can acquire the CHB by employing either the 

hippocampus-based spatial strategy or by the caudate nucleus-based S-R strategy [4, 31, 32]. Other 

brain areas that might become involved are the amygdala, which is an area relevant for the emotional 

modulation of strategies [33] and the prefrontal cortex, which is associated to the switching between 

strategies [34]. During learning and memory remodeling of hippocampal regions occurs with 

alterations in dendrite complexity, spine density and neurogenesis [35-37]. Sex hormones modulate 
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these morphological substrates of learning and memory, which may explain why the estrous cycle of 

female rats is paralleled by fluctuations in spine density and number of new born cells in the 

hippocampus. Spine density and number of synapses is the highest during proestrus, followed by a 

rapid decrease in the estrus phase and intermediate spine density during diestrus [35-37]. Thus, 

enhancing effect of estrogen on dendritic growth and plasticity was found. In addition to sex 

hormones, corticosterone is also known to modulate neuronal plasticity resulting in decreased 

dendritic morphology in the dorsomedial striatum and CA3 region of the hippocampus [38-40]. 

Chronic stress and estradiol were found to affect spatial memory processes, which correlated with 

CA1 apical spine expression rather than CA3 dendritic organization [41]. It is likely that this interplay 

of sex and stress hormones on hippocampal plasticity modulates the changes in performance and 

strategy we have observed in the current study.  

Performance: In the present study, the performance related to the spatial strategy was not 

altered by either stress or estrous cycle. However, when in estrus and stressed, we found an improved 

performance in mice using the spatial strategy.  In contrast, performance of stressed male mice that 

remained in the spatial learning mode deteriorated, but was rescued in those who switched to S-R 

learning [4]. Apparently it is the switch of the learning strategy in a certain group of individuals rather 

than the perseverance of learned behavior per se that is relevant to keep an optimal level of 

performance.   

 

Conclusion  

Naïve female C57BL/6J mice use either the spatial or the S-R strategy to solve the CHB task. After 

acute stress female mice switch to spatial strategies. This switch occurs especially in the estrus phase 

with a concomitant improvement in performance. Previously we have reported that naive male 

C57BL/6J mice favor the spatial strategy and switch to S-R when stressed. While stress can induce a 

sex-dependent switch of learning strategies, at the same time this switch in strategy rescues 

performance.   
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Figure captions: 

 

Figure 1: Phases of the estrous cycle. Proestrus is characterized by single nuclei cells; estrus contains 

epithelial cells and in diestrus macrophages and single nuclei cells are present.  

 

Figure 2: Latency of the first visit to the exit hole (in seconds) of naive and stressed female mice 

during training in proestrus, estrus and diestrus. A) Naive mice; B) stressed mice. Insert: scheme 

of the circular hole board; gray circle: location of the exit hole; bottle: location of the proximal 

stimulus. Data expressed as mean ± SEM. * p<0.05 compared to naive estrus over trials 3 to 6.  

 

Figure 3: Percentage of female mice during proestrus, estrus and diestrus under naive and 

stressed conditions, showing S-R: Stimulus-Response or spatial strategy. Numbers in bars 

represent the total number of mice using either strategy. Insert: scheme of the circular hole board; gray 

circle: location of the exit hole; bottle: location of the proximal stimulus.* p<0.05 compared to naive 

females in the same phase of the estrous cycle.   
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Figure 3 
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