369 research outputs found

    Spectroscopy on two coupled flux qubits

    Full text link
    We have performed spectroscopy measurements on two coupled flux qubits. The qubits are coupled inductively, which results in a σ1zσ2z\sigma_1^z\sigma_2^z interaction. By applying microwave radiation, we observe resonances due to transitions from the ground state to the first two excited states. From the position of these resonances as a function of the magnetic field applied we observe the coupling of the qubits. The coupling strength agrees well with calculations of the mutual inductance

    The Effect of Steroid Treatment on Lipocortin Immunoreactivity of Rat Brain

    Get PDF
    Lipocortin-1, lipocortin-2 and lipocortin-5 were immunohistochemically assessed in rats. Apart from animals receiving no treatment, other animals received pretreatment with methylprednisolone, or the 21-aminosteroid U-74389F. Whereas Hpocortin immunoreactivity was absent in the greater part of the brain in animals not pretreated with steroid (except in sporadic microglial cells and choroid plexus), there was obvious immunostaining of parenchymatous elements in steroid pretreated animals. In the steroid pretreated animals lipocortin immunoreactivity of the brain tissue may indicate local formation of lipocortin under the influence of steroids that had entered the tissue. The cellular elements which showed immunostaining included meningeal cells, neurones, ependyma, oligodendroglia and capillary endotheHum

    Continuum Mechanics for Quantum Many-Body Systems: The Linear Response Regime

    Get PDF
    We derive a closed equation of motion for the current density of an inhomogeneous quantum many-body system under the assumption that the time-dependent wave function can be described as a geometric deformation of the ground-state wave function. By describing the many-body system in terms of a single collective field we provide an alternative to traditional approaches, which emphasize one-particle orbitals. We refer to our approach as continuum mechanics for quantum many-body systems. In the linear response regime, the equation of motion for the displacement field becomes a linear fourth-order integro-differential equation, whose only inputs are the one-particle density matrix and the pair correlation function of the ground-state. The complexity of this equation remains essentially unchanged as the number of particles increases. We show that our equation of motion is a hermitian eigenvalue problem, which admits a complete set of orthonormal eigenfunctions under a scalar product that involves the ground-state density. Further, we show that the excitation energies derived from this approach satisfy a sum rule which guarantees the exactness of the integrated spectral strength. Our formulation becomes exact for systems consisting of a single particle, and for any many-body system in the high-frequency limit. The theory is illustrated by explicit calculations for simple one- and two-particle systems.Comment: 23 pages, 4 figures, 1 table, 6 Appendices This paper is a follow-up to PRL 103, 086401 (2009

    Protoneutron stars within the Brueckner-Bethe-Goldstone theory

    Full text link
    We study the structure of newly born neutron stars (protoneutron stars) within the finite temperature Brueckner-Bethe-Goldstone theoretical approach including also hyperons. We find that for purely nucleonic stars both finite temperature and neutrino trapping reduce the value of the maximum mass. For hyperonic stars the effect is reversed, because neutrino trapping shifts the appearance of hyperons to larger baryon density and stiffens considerably the equation of state.Comment: 11 pages, 7 figures, submitted to Astronomy & Astrophysic

    Infrastructure for Retinal Image Analysis

    Get PDF
    This paper introduces a retinal image analysis infrastructure for the automatic assessment of biomarkers related to early signs of diabetes, hypertension and other systemic diseases. The developed application provides several tools, namely normalization, vessel enhancement and segmentation, optic disc and fovea detection, junction detection, bifurcation/crossing discrimination, artery/vein classification and red lesion detection. The pipeline of these methods allows the assessment of important biomarkers characterizing dynamic properties of retinal vessels, such as tortuosity, width, fractal dimension and bifurcation geometry features

    The application of KAZE features to the classification echocardiogram videos

    Get PDF
    In the computer vision field, both approaches of SIFT and SURF are prevalent in the extraction of scale-invariant points and have demonstrated a number of advantages. However, when they are applied to medical images with relevant low contrast between target structures and surrounding regions, these approaches lack the ability to distinguish salient features. Therefore, this research proposes a different approach by extracting feature points using the emerging method of KAZE. As such, to categorise a collection of video images of echocardiograms, KAZE feature points, coupled with three popular representation methods, are addressed in this paper, which includes the bag of words (BOW), sparse coding, and Fisher vector (FV). In comparison with the SIFT features represented using Sparse coding approach that gives 72% overall performance on the classification of eight viewpoints, KAZE feature integrated with either BOW, sparse coding or FV improves the performance significantly with the accuracy being 81.09%, 78.85% and 80.8% respectively. When it comes to distinguish only three primary view locations, 97.44% accuracy can be achieved when employing the approach of KAZE whereas 90% accuracy is realised while applying SIFT features
    corecore