8 research outputs found

    Rainbow Smelt (Osmerus mordax) Genomic Library and EST Resources

    Get PDF
    Genomic resources in rainbow smelt (Osmerus mordax) enable us to examine the genome duplication process in salmonids and test hypotheses relating to the fate of duplicated genes. They further enable us to pursue physiological and ecological studies in smelt. A bacterial artificial chromosome library containing 52,410 clones with an average insert size of 146 kb was constructed. This library represents an 11-fold average coverage of the rainbow smelt (O. mordax) genome. In addition, several complementary deoxyribonucleic acid libraries were constructed, and 36,758 sequences were obtained and combined into 12,159 transcripts. Over half of these transcripts have been identified, several of which have been associated with cold adaptation. These basic resources show high levels of similarity (86%) to salmonid genes and provide initial support for genome duplication in the salmonid ancestor. They also facilitate identification of genes important to fish and direct us toward new technologies for other studies in fish biology

    J Immunol

    No full text
    The killer cell Ig-like receptors (KIRs) of NK cells recognize MHC class I ligands and function in placental reproduction and immune defense against pathogens. During the evolution of monkeys, great apes, and humans, an ancestral KIR3DL gene expanded to become a diverse and rapidly evolving gene family of four KIR lineages. Characterizing the KIR locus are three framework regions, defining two intervals of variable gene content. By analysis of four KIR haplotypes from two species of gibbon, we find that the smaller apes do not conform to these rules. Although diverse and irregular in structure, the gibbon haplotypes are unusually small, containing only two to five functional genes. Comparison with the predicted ancestral hominoid KIR haplotype indicates that modern gibbon KIR haplotypes were formed by a series of deletion events, which created new hybrid genes as well as eliminating ancestral genes. Of the three framework regions, only KIR3DL3 (lineage V), defining the 5' end of the KIR locus, is present and intact on all gibbon KIR haplotypes. KIR2DL4 (lineage I) defining the central framework region has been a major target for elimination or inactivation, correlating with the absence of its putative ligand, MHC-G, in gibbons. Similarly, the MHC-C–driven expansion of lineage III KIR genes in great apes has not occurred in gibbons because they lack MHC-C. Our results indicate that the selective forces shaping the size and organization of the gibbon KIR locus differed from those acting upon the KIR of other hominoid species

    Occurrence of imposex in Thais haemastoma: possible evidence of environmental contamination derived from organotin compounds in Rio de Janeiro and Fortaleza, Brazil

    No full text
    There are indications that the widespread use of organotin compounds (TBT and TPT) as antifoulings, as stabilizers in plastic and as pesticides, has severely affected several species of marine organisms. The most striking effect of TBT and TPT as hormonal disruptors is the development of male organs in females of gastropods, currently denominated imposex. This syndrome can lead to the sterilization and death of affected organisms. The present work gives an overview of the present state of knowledge on imposex occurrence and reports results of a survey conducted in Guanabara Bay, Rio de Janeiro and in several sites along the coast of Fortaleza, Ceará State. Different stages of imposex development were verified in this survey, however, the most prominent levels appeared associated to known spot sources of TBT and TPT.Existem evidências de que a utilização amplamente disseminada de compostos organoestânicos ( TBT e TPT) como antiincrustantes, estabilizadores em plásticos e como pesticidas tenha afetado severamente diversas espécies de organismos marinhos. O mais característico efeito do TBT e do TPT como desreguladores endócrinos é o desenvolvimento de caracteres sexuais masculinos em fêmeas de gastrópodos, conhecido como imposex. Esta síndrome pode levar à esterelização e morte dos organismos afetados. O presente trabalho apresenta uma vista geral ao estado atual do conhecimento sobre a ocorrência do imposex, e reporta os resultados de um estudo conduzido na Baía de Guanabara, Rio de Janeiro, e ao longo da costa de Fortaleza, no Ceará. Diferentes estágios de desenvolvimento do imposex foram verificados neste estudo, os mais proeminentes parecendo associados às fontes pontuais locais conhecidas de TBT e TPT

    Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    No full text
    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly­(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na<sup>0.7+</sup>(Mg<sub>5.5</sub>Li<sub>0.3</sub>Si<sub>8</sub>)­O<sub>20</sub>(OH)<sub>4</sub>)<sup>0.7–</sup>), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties

    History on organotin compounds, from snails to humans

    No full text
    Organotin compounds are industrial chemicals used as biocides, polyvinyl chloride stabilizers and industrial catalysts for the manufacture of silicone and polyurethane foams. Despite multiple applications, organotin notoriety is due to tributyltin, a potent biocide used in antifouling paints. Because of the intensive use of tributyltin for the protection of ships’ hulls, tributyltin has been largely released into waters, resulting in adverse and even bizarre effects on aquatic organisms, such as imposex in gastropods. However, organotins include other compounds such as tributyltin derivatives, phenyltins and octyltins. Organotin use in plastics, silicone and foams results in their occurrence almost everywhere, e.g., clothes, toys, wallpaper, food containers, household piping and medical devices. Hence, humans are exposed to organotins not solely through ingestion of contaminated seafood but also through direct contact with treated products and by inhalation and ingestion of dust. As a consequence, organotins have been detected in human samples. Toxicity data reveal that organotins are endocrine disruptors, immunotoxicants, carcinogens and obesogens. Here, we review the levels, fate and effects of organotin compounds toward wildlife and humans, starting with a description of organotin applications, with particular incidence in antifouling paints. The global contamination of the marine environment and the deleterious effects of tributyltin onto nontarget organisms are addressed, with particular attention to the imposex phenomenon. The restrictions on tributyltin use in antifouling paints are also described alongside with the new regulations for organotins in consumer products. The sources and pathways of organotins in the environment are discussed, studies in human exposure are presented, and future research is proposed

    Direct and indirect therapy: Neurostimulation for the treatment of dysphagia after stroke

    No full text
    corecore