818 research outputs found

    Enhancement and Civic Virtue

    Get PDF
    Opponents of biomedical enhancement frequently adopt what Allen Buchanan has called the “Personal Goods Assumption.” On this assumption, the benefits of biomedical enhancement will accrue primarily to those individuals who undergo enhancements, not to wider society. Buchanan has argued that biomedical enhancements might in fact have substantial social benefits by increasing productivity. We outline another way in which enhancements might benefit wider society: by augmenting civic virtue and thus improving the functioning of our political communities. We thus directly confront critics of biomedical enhancement who argue that it will lead to a loss of social cohesion and a breakdown in political lif

    How well do DRGs for appendectomy explain variations in resource use? : An analysis of patient-level data from 10 European countries

    Get PDF
    Appendectomy is a common and relatively simple procedure to remove an inflamed appendix, but the rate of appendectomy varies widely across Europe. This paper investigates factors that explain differences in resource use for appendectomy. We analysed 106,929 appendectomy patients treated in 939 hospitals in ten European countries. In stage one, we tested the performance of three models in explaining variation in the (log of) cost of the inpatient stay (seven countries) or length-of-stay (three countries). The first model used only the Diagnosis Related Groups (DRGs) to which patients were coded; the second used a core set of general patient-level and appendectomy-specific variables; and the third model combined both sets of variables. In stage two, we investigated hospital-level variation. In classifying appendectomy patients, most DRG systems take account of complex diagnoses and comorbidities, but use different numbers of DRGs (range: 2 to 8). The capacity of DRGs and patient-level variables to explain patient-level cost variation ranges from 34% in Spain to over 60% in England and France. All DRG systems can make better use of administrative data such as the patient’s age, diagnoses and procedures, and all countries have outlying hospitals that could improve their management of resources for appendectomy

    IceCube3--a new window on the Universe

    Full text link
    This paper gives an overview of the scientific goals of IceCube with an emphasis on the importance of atmospheric neutrinos. Status and schedule for completing the detector are presented.Comment: 13 pages, 6 figures, to appear in A.I.P. Conf. Proceedings, 3rd Latin American School on Cosmic Rays, Arequipa, Peru, September, 200

    Novel Techniques for Processing Data with an FMCW radar

    Get PDF
    This dissertation examines and analyzes novel techniques that are useful in the collection and processing of data from a Frequency Modulated Continuous Wave Radar. The major topics discussed in this work are: reduction of amplitude modulation, signature collection without an anechoic chamber, transforming a signature into a matched filter, accounting for electromagnetic interference, accounting for digital noise, and the application of a Support Vector Machine to achieve classification. In addition, this work also provides a broad overview of a framework specifically developed to improve detection and classification without requiring expensive hardware modification. The four main categories analyzed in this work are distortion, spectral signature, optimal detection, and classification. Some notable contributions in this work include the assessment of a novel technique’s effectiveness to improve model accuracy by accounting for amplitude modulation in an FMCW radar, as well as discussion of improved techniques to perform signature collection with an FMCW radar in the absence of an anechoic chamber. The signature collection technique is a novel approach that utilizes physics and wavelets in an effort to improve Signal to Noise Ratio (SNR). This work also considers a novel technique to convert an FMCW target signature into coefficients for a matched filter, thus allowing for the full mathematical application of the optimal matched filter. In addition, this work provides an analysis of the improved performance of an FMCW radar through the development and use of a novel technique to account for both electromagnetic interference and digital noise. Finally the initial discovery, development, and refinement of an innovative application using SVM to classify the matched filter results of FMCW radar targets is given, thus resulting in previously uncollected and undocumented viable baseline data

    Novel Techniques for Processing Data with an FMCW radar

    Get PDF
    This dissertation examines and analyzes novel techniques that are useful in the collection and processing of data from a Frequency Modulated Continuous Wave Radar. The major topics discussed in this work are: reduction of amplitude modulation, signature collection without an anechoic chamber, transforming a signature into a matched filter, accounting for electromagnetic interference, accounting for digital noise, and the application of a Support Vector Machine to achieve classification. In addition, this work also provides a broad overview of a framework specifically developed to improve detection and classification without requiring expensive hardware modification. The four main categories analyzed in this work are distortion, spectral signature, optimal detection, and classification. Some notable contributions in this work include the assessment of a novel technique’s effectiveness to improve model accuracy by accounting for amplitude modulation in an FMCW radar, as well as discussion of improved techniques to perform signature collection with an FMCW radar in the absence of an anechoic chamber. The signature collection technique is a novel approach that utilizes physics and wavelets in an effort to improve Signal to Noise Ratio (SNR). This work also considers a novel technique to convert an FMCW target signature into coefficients for a matched filter, thus allowing for the full mathematical application of the optimal matched filter. In addition, this work provides an analysis of the improved performance of an FMCW radar through the development and use of a novel technique to account for both electromagnetic interference and digital noise. Finally the initial discovery, development, and refinement of an innovative application using SVM to classify the matched filter results of FMCW radar targets is given, thus resulting in previously uncollected and undocumented viable baseline data

    Use of Self Organized Maps for Feature Extraction of Hyperspectral Data

    Get PDF
    In this paper, the problem of analyzing hyperspectral data is presented. The complexity of multi-dimensional data leads to the need for computer assisted data compression and labeling of important features. A brief overview of Self-Organizing Maps and their variants is given and then two possible methods of data analysis are examined. These methods are incorporated into a program derived from som_toolbox2. In this program, ASD data (data collected by an Analytical Spectral Device sensor) is read into a variable, relevant bands for discrimination between classes are extracted, and several different methods of analyzing the results are employed. A GUI was developed for easy implementation of these three stages

    SPARC Collaboration: New Strategy for Storage Ring Physics at FAIR

    Full text link
    SPARC collaboration at FAIR pursues the worldwide unique research program by utilizing storage ring and trapping facilities for highly-charged heavy ions. The main focus is laid on the exploration of the physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as on the experiments at the border between nuclear and atomic physics. Very recently SPARC worked out a realization scheme for experiments with highly-charged heavy-ions at relativistic energies in the High-Energy Storage Ring HESR and at very low-energies at the CRYRING coupled to the present ESR. Both facilities provide unprecedented physics opportunities already at the very early stage of FAIR operation. The installation of CRYRING, dedicated Low-energy Storage Ring (LSR) for FLAIR, may even enable a much earlier realisation of the physics program of FLAIR with slow anti-protons.Comment: IX International Workshop on "APPLICATION OF LASERS AND STORAGE DEVICES IN ATOMIC NUCLEI RESEARCH", Recent Achievements and Future Prospects, May 13 - 16, 2013, Pozna\'n, Polan
    • …
    corecore