7 research outputs found

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    No full text

    Final reports of the Stardust Interstellar Preliminary Examination

    No full text
    With the discovery of bona fide extraterrestrial materials in the Stardust Interstellar Dust Collector, NASA now has a fundamentally new returned sample collection, after the Apollo, Antarctic meteorite, Cosmic Dust, Genesis, Stardust Cometary, Hayabusa, and Exposed Space Hardware samples. Here, and in companion papers in this volume, we present the results from the Preliminary Examination of this collection, the Stardust Interstellar Preliminary Examination (ISPE). We found extraterrestrial materials in two tracks in aerogel whose trajectories and morphology are consistent with an origin in the interstellar dust stream, and in residues in four impacts in the aluminum foil collectors. While the preponderance of evidence, described in detail in companion papers in this volume, points toward an interstellar origin for some of these particles, alternative origins have not yet been eliminated, and definitive tests through isotopic analyses were not allowed under the terms of the ISPE. In this summary, we answer the central questions of the ISPE: How many tracks in the collector are consistent in their morphology and trajectory with interstellar particles? How many of these potential tracks are consistent with real interstellar particles, based on chemical analysis? Conversely, what fraction of candidates are consistent with either a secondary or interplanetary origin? What is the mass distribution of these particles, and what is their state? Are they particulate or diffuse? Is there any crystalline material? How many detectable impact craters (> 100 nm) are there in the foils, and what is their size distribution? How many of these craters have analyzable residue that is consistent with extraterrestrial material? And finally, can craters from secondaries be recognized through crater morphology (e.g., ellipticity)

    Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector

    No full text
    We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34

    Stardust Interstellar Preliminary Examination X: Impact speeds and directions of interstellar grains on the Stardust dust collector

    No full text
    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low ( 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 g cm?3, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations

    Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel

    No full text
    International audienceHard X-ray, quantitative, fluorescence elemental imaging was performed on the ID22NI nanoprobe and ID22 microprobe beam lines of the European Synchrotron Research facility (ESRF) in Grenoble, France, on eight interstellar candidate impact features in the framework of the NASA Stardust Interstellar Preliminary Examination (ISPE). Three features were unambiguous tracks, and the other five were identified as possible, but not definite, impact features. Overall, we produced an absolute quantification of elemental abundances in the 15 = Z = 30 range by means of corrections of the beam parameters, reference materials, and fundamental atomic parameters. Seven features were ruled out as interstellar dust candidates (ISDC) based on compositional arguments. One of the three tracks, I1043,1,30,0,0, contained, at the time of our analysis, two physically separated, micrometer-sized terminal particles, the most promising ISDCs, Orion and Sirius. We found that the Sirius particle was a fairly homogenous Ni-bearing particle and contained about 33 fg of distributed high-Z elements (Z 12). Orion was a highly heterogeneous Fe-bearing particle and contained about 59 fg of heavy elements located in hundred nanometer phases, forming an irregular mantle that surrounded a low-Z core. X-ray diffraction (XRD) measurements revealed Sirius to be amorphous, whereas Orion contained partially crystalline material (Gainsforth et al. 2014). Within the mantle, one grain was relatively Fe-Ni-Mn-rich; other zones were relatively Mn-Cr-Ti-rich and may correspond to different spinel populations. For absolute quantification purposes, Orion was assigned to a mineralogical assemblage of forsterite, spinel, and an unknown Fe-bearing phase, while Sirius was most likely composed of an amorphous Mg-bearing material with minor Ni and Fe. Owing to its nearly chondritic abundances of the nonvolatile elements Ca, Ti, Co, and Ni with respect to Fe, in combination with the presence of olivine and spinel as inferred from XRD measurements, Orion had a high probability of being extraterrestrial in origin

    Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates

    No full text
    Using synchrotron-based X-ray diffraction measurements, we identified crystalline material in two particles of extraterrestrial origin extracted from the Stardust Interstellar Dust Collector. The first particle, I1047,1,34 (Hylabrook), consisted of a mosaiced olivine grain approximately 1 µm in size with internal strain fields up to 0.3%. The unit cell dimensions were a = 4.85 ± 0.08 Å, b = 10.34 ± 0.16 Å, c = 6.08 ± 0.13 Å (2?). The second particle, I1043,1,30 (Orion), contained an olivine grain ? 2 µm in length and >500 nm in width. It was polycrystalline with both mosaiced domains varying over ? 20math formula and additional unoriented domains, and contained internal strain fields < 1%. The unit cell dimensions of the olivine were a = 4.76 ± 0.05 Å, b = 10.23 ± 0.10 Å, c = 5.99 ± 0.06 Å (2?), which limited the olivine to a forsteritic composition math formula (2?). Orion also contained abundant spinel nanocrystals of unknown composition, but unit cell dimension a = 8.06 ± 0.08 Å (2?). Two additional crystalline phases were present and remained unidentified. An amorphous component appeared to be present in both these particles based on STXM and XRF results reported elsewhere

    Stardust Interstellar Preliminary Examination VII: Synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe

    No full text
    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 ? Z ? 30, on six “interstellar candidates,” potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust
    corecore