27 research outputs found

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Optimal Oxygen Titration in Patients with Chronic Obstructive Pulmonary Disease: A Role for Automated Oxygen Delivery?

    No full text
    Oxygen therapy can be life-saving for patients with chronic obstructive pulmonary disease (COPD) and is the backbone of any acute COPD treatment strategy. Although largely considered to be a benign drug, many publications have highlighted the need to accurately adjust oxygen delivery to avoid both hypoxemia and the problem of hyperoxia-induced hypercapnia. Recent clinical data have shown that the deleterious effects of excess oxygen treatment can not only alter carbon dioxide levels (which has been known for more than 60 years) but can also lead to an increase in mortality. Nevertheless, despite the extensive literature, the risks associated with hyperoxia are often overlooked and published clinical recommendations are largely ignored. This failure in knowledge translation has become increasingly important not only because of the desire to reduce medical error, but in a society with limited health care resources, the economic burden of COPD is such that it cannot afford to make preventable medical mistakes. Recently, novel devices have been developed to automatically adjust oxygen flow rates to maintain stable oxygen saturations. These closed-loop oxygen delivery systems have the potential to reduce medical error, improve morbidity and mortality, and reduce health care costs. Preliminary data in this field are promising and will require a significant amount of research in the coming years to determine the precise indications for these systems. The importance of appropriate oxygen dosing and the current literature regarding novel oxygen delivery systems are reviewed

    Evaluation of emotional excitation during standardized endotracheal intubation in simulated conditions

    No full text
    Abstract Objective To assess how stressful conditions in endotracheal intubation could induct emotional excitation in a population of acute care physicians. Materials and methods Two situations were randomly tested: one in standard and easy intubation conditions the other under difficult conditions presumed to induce stress (monitoring alarms, manikin lying on the floor, difficult intubation). Emotional excitation was assessed using several physiological (cardiac patterns, electrodermal activity and eye-tracking) and psycho-cognitive patterns. Auto-evaluations of video recordings and mental workload were performed immediately after simulation. Results Significant physiological parameter modifications were observed under the stressful intubation conditions (SDNN 35 ± 15 vs. 42 ± 21; p = 0.035—AVNN 514 ± 94 vs. 548 ± 110; p < 0.0001). Emotional excitation was demonstrated to lead a higher mental workload (NASA-TLX = 39 ± 18 vs. 63 ± 15; p = 0.001), frustration and effort dimensions being its determinant components (p < 0.01). Video recording auto-evaluations depicted significant emotional excitation occurrence under the difficult conditions, with few differences according to the operator’s experience. Conclusion This study highlights the fact that a stress condition during ETI on a simulation model leads to an important emotional excitation as compared to the neutral condition

    Pulmonary Effects of One Week of Repeated Recreational Closed-Circuit Rebreather Dives in Cold Water

    No full text
    Background and Objectives: The use of closed-circuit rebreathers (CCRs) in recreational diving is gaining interest. However, data regarding its physiological effects are still scarce. Immersion, cold water, hyperoxia, exercise or the equipment itself could challenge the cardiopulmonary system. The purpose of this study was to examine the impact of CCR diving on lung function and autonomous cardiac activity after a series of CCR dives in cold water. Materials and Methods: Eight CCR divers performed a diving trip (one week) in the Baltic Sea. Spirometry parameters, SpO2, and the lung ultrasonography score (LUS) associated with hydration monitoring by bioelectrical impedance were assessed at the end of the week. Heart rate variability (HRV) was recorded during the dives. Results: No diver declared pulmonary symptoms. The LUS increased after dives combined with a slight non-pathological decrease in SpO2. Spirometry was not altered, and all body water compartments were increased. Global HRV decreased during diving with a predominant increase in sympathetic tone while the parasympathetic tone decreased. All parameters returned to baseline 24 h after the last dive. Conclusions: The lung aeration disorders observed seem to be transient and not associated with functional spirometry alteration. The HRV dynamics highlighted physiological constraints during the dive as well as environmental-stress-related stimulation that may influence pulmonary changes. The impact of these impairments is unknown but should be taken into account, especially when considering long and repetitive CCR dives

    Photoplethysmographic determination of the respiratory rate in acutely ill patients: validation of a new algorithm and implementation into a biomedical device

    No full text
    Abstract Background Respiratory rate is among the first vital signs to change in deteriorating patients. The aims of this study were to evaluate the accuracy of respiratory rate measurements using a specifically dedicated reflection-mode photoplethysmographic signal analysis in a pathological condition (PPG-RR) and to validate its implementation within medical devices. Methods This study is derived from a data mining project, including all consecutive patients admitted to our ICU (ReaSTOC study, ClinicalTrials.gov identifier: NCT02893462). During the evaluation phase of the algorithm, PPG-RR calculations were retrospectively performed on PPG waveforms extracted from the data warehouse and compared with RR reference values. During the prospective phase, PPG-RR calculations were automatically and continuously performed using a dedicated device (FreeO2, Oxynov, QuĂ©bec, QC, Canada). In all phases, reference RR was measured continuously using electrical thoracic impedance and chronometric evaluation (Manual-RR) over a 30-s period. Results In total, 201 ICU patients’ recordings (SAPS II 51.7 ± 34.6) were analysed during the retrospective evaluation phase, most of them being admitted for a respiratory failure and requiring invasive mechanical ventilation. PPG-RR determination was available in 95.5% cases, similar to reference (22 ± 4 vs. 22 ± 5 c/min, respectively; p = 1), and well correlated with reference values (R = 0.952; p < 0.0001), with a low bias (0.1 b/min) and deviation (± 3.5 b/min). Prospective estimation of the PPG-RR on 30 ICU patients’ recordings was well correlated with the reference method (Manual-RR; r = 0.78; p < 0.001). Comparison of the methods depicted a low bias (0.5 b/min) and acceptable deviation (< ± 5.5 b/min). Conclusion According to our results, PPG-RR is an interesting approach for ventilation monitoring, as this technique would make simultaneous monitoring of respiratory rate and arterial oxygen saturation possible, thus minimizing the number of sensors attached to the patient. Trial registry number ClinicalTrials.gov identifier NCT0289346

    Defining predictors for successful mechanical ventilation weaning, using a data-mining process and artificial intelligence

    No full text
    Abstract Mechanical ventilation weaning within intensive care units (ICU) is a difficult process, while crucial when considering its impact on morbidity and mortality. Failed extubation and prolonged mechanical ventilation both carry a significant risk of adverse events. We aimed to determine predictive factors of extubation success using data-mining and artificial intelligence. A prospective physiological and biomedical signal data warehousing project. A 21-beds medical Intensive Care Unit of a University Hospital. Adult patients undergoing weaning from mechanical ventilation. Hemodynamic and respiratory parameters of mechanically ventilated patients were prospectively collected and combined with clinical outcome data. One hundred and eight patients were included, for 135 spontaneous breathing trials (SBT) allowing to identify physiological parameters either measured before or during the trial and considered as predictive for extubation success. The Early-Warning Score Oxygen (EWSO2) enables to discriminate patients deemed to succeed extubation, at 72-h and 7-days. Cut-off values for EWSO2 (AUC = 0.80; Se = 0.75; Sp = 0.76), mean arterial pressure and heart-rate variability parameters were determined. A predictive model for extubation success was established including body-mass index (BMI) on inclusion, occlusion pressure at 0,1 s. (P0.1) and heart-rate analysis parameters (LF/HF) both measured before SBT, and heart rate during SBT (global performance 62%; 83%). The data-mining process enabled to detect independent predictive factors for extubation success and to develop a dynamic predictive model using artificial intelligence. Such predictive tools may help clinicians to better discriminate patients deemed to succeed extubation and thus improve clinical performance

    MOESM1 of Accuracy of height estimation and tidal volume setting using anthropometric formulas in an ICU Caucasian population

    No full text
    Additional file 1. The seventeen different height estimation formulas that were used for the different measures are presented. Ten estimation formulas are proposed for the upper limb and seven for the lower limb; the modified Chumlea method uses different marks, but the same calculation formula

    MOESM1 of A new global and comprehensive model for ICU ventilator performances evaluation

    No full text
    Additional file 1: Table S1. Ventilator’s general characteristics. Table S2. Randomisation table for device’s testings. Table S3. Participants’ list and cumulated knowledge. Figure S1. Pupillar diameter variation measurements. Figure S2. Overall inspiratory triggering delay. Figure S3. Asynchrony types for each device in the noninvasive ventilation mode
    corecore