10 research outputs found

    Link Prediction Based on Local Random Walk

    Get PDF
    The problem of missing link prediction in complex networks has attracted much attention recently. Two difficulties in link prediction are the sparsity and huge size of the target networks. Therefore, the design of an efficient and effective method is of both theoretical interests and practical significance. In this Letter, we proposed a method based on local random walk, which can give competitively good prediction or even better prediction than other random-walk-based methods while has a lower computational complexity.Comment: 6 pages, 2 figure

    Speech Graphs Provide a Quantitative Measure of Thought Disorder in Psychosis

    Get PDF
    Background: Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships. Methodology/Principal Findings: To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of sensitivity and specificity. Conclusions/Significance: The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.FINEP [01.06.1092.00]FINEPCNPq Universal [481506/2007-1]CNPq UniversalCNPqCNPqCapesCAPESad Associacao Alberto Santos Dumont para Apoio a Pesquisa (AASDAP)a'd Associacao Alberto Santos Dumont para Apoio a Pesquisa (AASDAP

    Growing networks with local rules: preferential attachment, clustering hierarchy and degree correlations

    Full text link
    The linear preferential attachment hypothesis has been shown to be quite successful to explain the existence of networks with power-law degree distributions. It is then quite important to determine if this mechanism is the consequence of a general principle based on local rules. In this work it is claimed that an effective linear preferential attachment is the natural outcome of growing network models based on local rules. It is also shown that the local models offer an explanation to other properties like the clustering hierarchy and degree correlations recently observed in complex networks. These conclusions are based on both analytical and numerical results of different local rules, including some models already proposed in the literature.Comment: 17 pages, 14 figures (to appear in Phys. Rev E

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome

    Analyzing and modeling real-world phenomena with complex networks: a survey of applications

    No full text
    corecore