21 research outputs found

    NILC_USP: an improved hybrid system for sentiment analysis in Twitter messages.

    Get PDF
    This paper describes the NILC USP system that participated in SemEval-2014 Task 9: Sentiment Analysis in Twitter, a re-run of the SemEval 2013 task under the same name. Our system is an improved version of the system that participated in the 2013 task. This system adopts a hybrid classification process that uses three classification approaches: rule-based, lexiconbased and machine learning. We suggest a pipeline architecture that extracts the best characteristics from each classifier. In this work, we want to verify how\ud this hybrid approach would improve with better classifiers. The improved system achieved an F-score of 65.39% in the Twitter message-level subtask for 2013 dataset (+ 9.08% of improvement) and 63.94% for 2014 dataset.FAPESPSAMSUN

    Multiple Myeloma Treatment in Real-world Clinical Practice : Results of a Prospective, Multinational, Noninterventional Study

    Get PDF
    Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: M.M. has received personal fees from Janssen, Celgene, Amgen, Bristol-Myers Squibb, Sanofi, Novartis, and Takeda and grants from Janssen and Sanofi during the conduct of the study. E.T. has received grants from Janssen and personal fees from Janssen and Takeda during the conduct of the study, and grants from Amgen, Celgene/Genesis, personal fees from Amgen, Celgene/Genesis, Bristol-Myers Squibb, Novartis, and Glaxo-Smith Kline outside the submitted work. M.V.M. has received personal fees from Janssen, Celgene, Amgen, and Takeda outside the submitted work. M.C. reports honoraria from Janssen, outside the submitted work. M. B. reports grants from Janssen Cilag during the conduct of the study. M.D. has received honoraria for participation on advisory boards for Janssen, Celgene, Takeda, Amgen, and Novartis. H.S. has received honoraria from Janssen-Cilag, Celgene, Amgen, Bristol-Myers Squibb, Novartis, and Takeda outside the submitted work. V.P. reports personal fees from Janssen during the conduct of the study and grants, personal fees, and nonfinancial support from Amgen, grants and personal fees from Sanofi, and personal fees from Takeda outside the submitted work. W.W. has received personal fees and grants from Amgen, Celgene, Novartis, Roche, Takeda, Gilead, and Janssen and nonfinancial support from Roche outside the submitted work. J.S. reports grants and nonfinancial support from Janssen Pharmaceutical during the conduct of the study. V.L. reports funding from Janssen Global Services LLC during the conduct of the study and study support from Janssen-Cilag and Pharmion outside the submitted work. A.P. reports employment and shareholding of Janssen (Johnson & Johnson) during the conduct of the study. C.C. reports employment at Janssen-Cilag during the conduct of the study. C.F. reports employment at Janssen Research and Development during the conduct of the study. F.T.B. reports employment at Janssen-Cilag during the conduct of the study. The remaining authors have stated that they have no conflicts of interest. Publisher Copyright: © 2018 The AuthorsMultiple myeloma (MM) remains an incurable disease, with little information available on its management in real-world clinical practice. The results of the present prospective, noninterventional observational study revealed great diversity in the treatment regimens used to treat MM. Our results also provide data to inform health economic, pharmacoepidemiologic, and outcomes research, providing a framework for the design of protocols to improve the outcomes of patients with MM. Background: The present prospective, multinational, noninterventional study aimed to document and describe real-world treatment regimens and disease progression in multiple myeloma (MM) patients. Patients and Methods: Adult patients initiating any new MM therapy from October 2010 to October 2012 were eligible. A multistage patient/site recruitment model was applied to minimize the selection bias; enrollment was stratified by country, region, and practice type. The patient medical and disease features, treatment history, and remission status were recorded at baseline, and prospective data on treatment, efficacy, and safety were collected electronically every 3 months. Results: A total of 2358 patients were enrolled. Of these patients, 775 and 1583 did and did not undergo stem cell transplantation (SCT) at any time during treatment, respectively. Of the patients in the SCT and non-SCT groups, 49%, 21%, 14%, and 15% and 57%, 20%, 12% and 10% were enrolled at treatment line 1, 2, 3, and ≥ 4, respectively. In the SCT and non-SCT groups, 45% and 54% of the patients had received bortezomib-based therapy without thalidomide/lenalidomide, 12% and 18% had received thalidomide/lenalidomide-based therapy without bortezomib, and 30% and 4% had received bortezomib plus thalidomide/lenalidomide-based therapy as frontline treatment, respectively. The corresponding proportions of SCT and non-SCT patients in lines 2, 3, and ≥ 4 were 45% and 37%, 30% and 37%, and 12% and 3%, 33% and 27%, 35% and 32%, and 8% and 2%, and 27% and 27%, 27% and 23%, and 6% and 4%, respectively. In the SCT and non-SCT patients, the overall response rate was 86% to 97% and 64% to 85% in line 1, 74% to 78% and 59% to 68% in line 2, 55% to 83% and 48% to 60% in line 3, and 49% to 65% and 36% and 45% in line 4, respectively, for regimens that included bortezomib and/or thalidomide/lenalidomide. Conclusion: The results of our prospective study have revealed great diversity in the treatment regimens used to manage MM in real-life practice. This diversity was linked to factors such as novel agent accessibility and evolving treatment recommendations. Our results provide insight into associated clinical benefits.publishersversionPeer reviewe

    Dualismos em duelo

    Full text link

    Metabolomic approach for the analysis of micro-algae : direct analysis versus passive sampling

    No full text
    By 2014, the new targeted LC-MS/MS reference method for the detection of lipophilic toxins will replace the mouse bioassay (MBA). This bioassay, which has the advantage of being a rapid and global toxicity test, can not be used for toxin identification purposes. Furthermore, it has appeared that, in some cases, the mouse bioassay could reveal uncharacterized toxicities that could not be elucidated by targeted mass spectrometry methods. Therefore, moving from the global toxicity assessment test to a targeted technique leads to a lack of information on emerging toxins. Objectives: - Beside targeted methods, develop metabolomic approaches to screen for known and unknown emerging toxins - Develop passive sampling devices suitable for toxins of varying polarities, as a tool complementary to traditional monitoring - Compare metabolomic profiles of passively sampled algal constituents to those of algae themselves (footprint versus fingerprint

    Relative Molar Response of lipophilic marine algal toxins in liquid chromatography electrospray ionization mass spectrometry

    No full text
    Rationale Accurate quantitative analysis of lipophilic toxins by liquid chromatography-mass spectrometry (LC-MS) requires calibration solution reference materials (RMs) for individual toxin analogs. Untargeted analysis is aimed at identifying a vast number of compounds and thus validation of fully quantitative untargeted methods is not feasible. However, a semi-quantitative approach allowing for profiling is still required and will be strengthened by knowledge of the relative molar response (RMR) of analogs in liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization (ESI). Methods RMR factors were evaluated for toxins from the okadaic acid (OA/DTXs), yessotoxin (YTX), pectenotoxin (PTX), azaspiracid (AZA) and cyclic imine (CI) toxin groups, in both solvent standards and environmental sample extracts. Since compound ionization and fragmentation influences the MS response of toxins, RMRs were assessed under different chromatographic conditions (gradient, isocratic) and MS acquisition modes (SIM, SRM, All-ion, target MS/MS) on low and high resolution mass spectrometers. Results In general, RMRs were not significantly impacted by chromatographic conditions (isocratic vs gradient), with the exception of DTX1. MS acquisition modes had a more significant impact, with PnTX-G and SPX differing notably. For a given toxin group, response factors were generally in the range of 0.5 to 2. The cyclic imines were an exception. Conclusions Differences in RMRs between toxins of a same chemical base structure were not significant enough to indicate major issues for non-targeted semi-quantitative analysis, where there is limited or no availability of standards for many compounds, and where high degrees of accuracy are not required. Differences in RMRs should be considered when developing methods that use a standard of a single analogue to quantitate other toxins from the same group

    Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and liquid chromatography coupled to mass spectrometry

    No full text
    Algal toxins may accumulate in fish and shellfish and thus cause poisoning in consumers of seafood. Such toxins and the algae producing them are regularly surveyed in many countries, including Europe, North America, Japan and others. However, very little is known regards the occurrence of such algae and their toxins in most African countries. This paper reports on a survey of phytoplankton and algal toxins in Nigerian coastal waters. Seawater samples were obtained from four sites for phytoplankton identification, on three occasions between the middle of October 2014 and the end of February 2015 (Bar Beach and Lekki in Lagos State, Port Harcourt in Rivers State and Uyo in Akwa Ibom State). The phytoplankton community was generally dominated by diatoms and cyanobacteria; however several species of dinoflagellates were also identified: Dinophysis caudata, Lingulodinium polyedrum and two benthic species of Prorocentrum. Passive samplers (containing Diaion® HP-20 resin) were deployed for several 1-week periods on the same four sites to obtain profiles of algal toxins present in the seawater. Quantifiable amounts of okadaic acid (OA) and pectenotoxin 2 (PTX2), as well as traces of dinophysistoxin 1 (DTX1) were detected at several sites. Highest concentrations (60 ng OA g-1 HP-20 resin) were found at Lekki and Bar Beach stations, which also had the highest salinities. Non-targeted analysis using full-scan high resolution mass spectrometry showed that algal metabolites differed from site to site and for different sampling occasions. Screening against a marine natural products database indicated the potential presence of cyanobacterial compounds in the water column, which was also consistent with phytoplankton analysis. During this study, the occurrence of the marine dinoflagellate toxins OA and PTX2 has been demonstrated in coastal waters of Nigeria, despite unfavourable environmental conditions, with regards to the low salinities measured. Hence shellfish samples should be monitored in future to assess the risk for public health through accumulation of such toxins in seafood

    Toward Isolation of Palytoxins: Liquid Chromatography Coupled to Low- or High-Resolution Mass Spectrometry for the Study on the Impact of Drying Techniques, Solvents and Materials

    Get PDF
    Palytoxin (PLTX) and its congeners are emerging toxins held responsible for a number of human poisonings following the inhalation of toxic aerosols, skin contact, or the ingestion of contaminated seafood. Despite the strong structural analogies, the relative toxic potencies of PLTX congeners are quite different, making it necessary to isolate them individually in sufficient amounts for toxicological and analytical purposes. Previous studies showed poor PLTX recoveries with a dramatic decrease in PLTX yield throughout each purification step. In view of a large-scale preparative work aimed at the preparation of PLTX reference material, we have investigated evaporation as a critical—although unavoidable—step that heavily affects overall recoveries. The experiments were carried out in two laboratories using different liquid chromatography-mass spectrometry (LC-MS) instruments, with either unit or high resolution. Palytoxin behaved differently when concentrated to a minimum volume rather than when evaporated to complete dryness. The recoveries strongly depended on the solubility as well as on the material of the used container. The LC-MS analyses of PLTX dissolved in aqueous organic blends proved to give a peak intensity higher then when dissolved in pure water. After drying, the PLTX adsorption appeared stronger on glass surfaces than on plastic materials. However, both the solvents used to dilute PLTX and that used for re-dissolution had an important role. A quantitative recovery (97%) was achieved when completely drying 80% aqueous EtOH solutions of PLTX under N2-stream in Teflon. The stability of PLTX in acids was also investigated. Although PLTX was quite stable in 0.2% acetic acid solutions, upon exposure to stronger acids (pH < 2.66), degradation products were observed, among which a PLTX methyl-ester was identifie

    TOWARD QUANTITATIVE ISOLATION OF PALYTOXINS. PRELIMINARY STABILITY AND PURIFICATION STUDIES

    No full text
    Palytoxin is one of the most potent marine toxins and may be produced by several different species of the zoanthid Palythoa. Ovatoxins are palytoxin analogues produced by the sub-tropical microalga Ostreopsis cf. ovata, which has recently spread across the Mediterranean and Southern-Atlantic coasts of Europe. Several cases of inhalatory poisonings and/or skin injuries have been reported in beachgoers concomitantly with massive blooms of O. cf. ovata as well as in aquarium hobbyists from incidental contact with palytoxin-producing Palythoa spp. Symptom similarities between Ostreopsis- and Palythoa-related poisonings suggest that the etiological agent is the same. As a matter of fact, palytoxins and ovatoxins differ little in structural details- a few methyl, methylene and/or hydroxyl groups over a long polyhydroxylated aliphatic chain. So, they are likely to cause the same overall symptomatology although their relative potencies might be different. The increasing spread of the Ostreopsis phenomenon and the ever-growing number of palytoxin congeners being discovered makes the need of evaluating their toxicity urgent. The availability of sufficient amounts of well characterized reference material is the cornerstone for the achievement of toxicity data. To achieve this goal, we are developing an isolation procedure for quantitative recovery of individual palytoxin congeners from Palythoa spp. grown in marine aquarium and we are evaluating the stability of palytoxins under different conditions. In this work, different types of stationary phases (HLB, STRATA-X, SP-850, SP-207, HP-20, RP-18, Carbograph) and elution conditions were evaluated in terms of recovery yield and reproducibility for isolation of palytoxins from both soft-coral and aquarium water. Best recoveries were obtained by using HP-20 and RP-18. Furthermore, it emerged that Carbograph is a stationary phase able to completely retain palytoxin. For this reason it could be used in the detoxification procedures of the home aquaria. Several HPLC analytical columns (Poroshell 120 EC C18 and C8, TSK gel ODS 120A, Jupiter C18, ODS-3 prodigy, among others) are being tested for base-line chromatographic separation of individual congeners. The stability and recovery of palytoxin during different evaporation procedures (nitrogen stream, freeze drying, vacuum concentration, and speed-vac) has been also investigated. Strong acid negatively affected recovery of palytoxin during evaporation procedures, while acetic acid seemed to slightly facilitate recovery. A strong influence was also observed for the materials of the containers used in evaporation. Silanised glass and Teflon surfaces yielded significantly higher recoveries than unsilanised glass or polypropylene tubes. Optimised evaporation appears to be a critical step to minimise losses of palytoxin and analogues in preparative isolation procedures

    Metabolomic Analysis of Marine Microalgae Using High Resolution Mass Spectrometry for Taxonomic Comparisons and Screening of Marine Biotoxins

    No full text
    Out of the circa 5000 microalgae known, around 100 marine species of unicellular algae have been shown to produce several hundred biotoxins worldwide. Such biotoxins may be harmful to man through consumption of fish and shellfish exposed to such algae or through direct contact. Many official methods aimed at the detection of such toxins had traditionally been based on biological assays, due to the lack of reference compounds. Recently, legislation for shellfish safety in Europe introduced targeted MS screening for lipophilic toxins. Due to globalization of trade and climate change, there is a need to develop methods for untargeted screening to fully protect consumer safety, e.g. LC-HRMS. For this purpose we studied the metabolomes of marine microalgae using HRMS technique

    Extended evaluation of polymeric and lipophilic sorbents for passive sampling of marine toxins

    No full text
    Marine biotoxins are algal metabolites that can accumulate in fish or shellfish and render these foodstuffs unfit for human consumption. These toxins, released into seawater during algal occurrences, can be monitored through passive sampling. Acetone, methanol and isopropanol were evaluated for their efficiency in extracting toxins from algal biomass. Isopropanol was chosen for further experiments thanks to a slightly higher recovery and no artifact formation. Comparison of Oasis HLB, Strata-X, BondElut C18 and HP-20 sorbent materials in SPE-mode led to the choice of Oasis HLB, HP-20 and Strata-X. These three sorbents were separately exposed as passive samplers for 24 h to seawater spiked with algal extracts containing known amounts of okadaic acid (OA), azaspiracids (AZAs), pinnatoxin-G (PnTX-G), 13-desmethyl spirolide-C (SPX1) and palytoxins (PlTXs). Low density polyethylene (LDPE) and silicone rubber (PDMS) strips were tested in parallel on similar mixtures of spiked natural seawater for 24h. These strips gave significantly lower recoveries than the polymeric sorbents. Irrespective of the toxin group, the adsorption rate of toxins on HP-20 was slower than on Oasis HLB and Strata-X. However, HP-20 and Strata-X gave somewhat higher recoveries after 24h exposure. Irrespective of the sorbent tested, recoveries were generally highest for cyclic imines and OA group toxins, slightly lower for AZAs, and the lowest for palytoxins. Trials in re-circulated closed tanks with mussels exposed to Vulcanodinium rugosum or Prorocentrum lima allowed for further evaluation of passive samplers. In these experiments with different sorbent materials competing for toxins in the same container, Strata-X accumulated toxins faster than Oasis HLB, and HP-20, and to higher levels. The deployment of these three sorbents at Ingril French Mediterranean lagoon to detect PnTX-G in the water column showed accumulation of higher levels on HP-20 and Oasis HLB compared to Strata-X. This study has significantly extended the range of sorbents for passive sampling of marine toxins. In particular, sorbents were included that had previously been evaluated for polyhalogenated contaminants, pharmaceuticals, phytochemicals or veterinary residues. Moreover, this study has for the first time demonstrated the usefulness of the polymeric Oasis HLB and Strata-X sorbents in laboratory and field studies for various microalgal toxins
    corecore