5 research outputs found

    A multi-sensor wearable system for the assessment of diseased gait in real-world conditions

    Get PDF
    Introduction: Accurately assessing people’s gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking speed 0.03–0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions

    Design and validation of a multi-task, multi-context protocol for real-world gait simulation

    Get PDF
    Background: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. Methods: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants’ strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson’s disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. Results: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. Conclusions: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. Trial registration: ISRCTN—12246987

    A multi-sensor wearable system for the assessment of diseased gait in real-world conditions

    Get PDF
    Introduction: Accurately assessing people’s gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors).Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity.Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking speed 0.03–0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions

    Correction:Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium

    Get PDF
    Following publication of the original article [1], the author noticed the errors in Table 1, and in Discussion section. In Table 1 under Metric (Gait sequence detection) column, the algorithms GSD B was updated with wrong description, input, output, language and citation and GSD c with wrong description has been corrected as shown below: (Table presented.) Description of algorithms for each metric: gait sequence detection (GSD), initial contact event detection (ICD), cadence estimation (CAD) and stride length estimation (SL) Metric Name Description Input Output Language References GSD A Based on a frequency-based approach, this algorithm is implemented on the vertical and anterior–posterior acceleration signals. First, these are band pass filtered to keep frequencies between 0.5 and 3 Hz. Next, a convolution of a 2 Hz sinewave (representing a template for a gait cycle) is performed, from which local maxima will be detected to define the regions of gait acc_v: vertical acceleration acc_ap: anterior–posterior acceleration WinS = 3 s; window size for convolution OL = 1.5 s; overlap of windows Activity_thresh = 0.01; Motion threshold Fs: sampling frequency Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 × N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 × N vector Matlab® Iluz, Gazit [40] GSD B This algorithm, based on a time domain-approach, detects the gait periods based on identified steps. First, the norm of triaxial acceleration signal is low-pass filtered (FIR, fc = 3.2 Hz), then a peak detection procedure using a threshold of 0.1 [g] is applied to identify steps. Consecutive steps, detected using an adaptive step duration threshold are associated to gait sequences acc_norm: norm of the 3D-accelerometer signal Fs: sampling frequency th: peak detection threshold: 0.1 (g) Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 × N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 × N vector Matlab® Paraschiv-Ionescu, Newman [41] GSDc This algorithm utilizes the same approach as GSD Bthe only difference being a different threshold for peak detection of 0.15 [g] acc_norm: norm of the 3D-accelerometer signal Fs: sampling frequency th: peak detection threshold: 0.15 (g) Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 × N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1 × N vector Matlab® Paraschiv-Ionescu, Newman [41] In Discussion section, the paragraph should read as "Based on our findings collectively, we recommend using GSD B on cohorts with slower gait speeds and substantial gait impairments (e.g., proximal femoral fracture). This may be because this algorithm is based on the acceleration norm (overall accelerometry signal rather than a specific axis/direction (e.g., vertical), hence it is more robust to sensor misalignments that are common in unsupervised real-life settings. Moreover, the use of adaptive threshold, that are derived from the features of a subject’s data and applied to step duration for detection of steps belonging to gait sequences, allows increased robustness of the algorithm to irregular and unstable gait patterns" instead of “Based on our findings collectively, we recommend using GSD B on cohorts with slower gait speeds and substantial gait impairments (e.g., proximal femoral fracture). This may be because this algorithm is based on the acceleration norm (overall accelerometry signal rather than a specific axis/direction (e.g., vertical), hence it is more robust to sensor misalignments that are common in unsupervised real-life settings [41]. Moreover, the use of adaptive thresholds, that are derived from the features of a subject’s data and applied to the amplitude of acceleration norm and to step duration for detection of steps belonging to gait sequences, allows increased robustness of the algorithm to irregular and unstable gait patterns”.</p

    DataSheet1_A multi-sensor wearable system for the assessment of diseased gait in real-world conditions.docx

    No full text
    Introduction: Accurately assessing people’s gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors).Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity.Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking speed 0.03–0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.</p
    corecore