944 research outputs found

    Lebanon in Times of COVID-19: A Series of Crises

    Get PDF

    A new method for aspherical surface fitting with large-volume datasets

    Get PDF
    In the framework of form characterization of aspherical surfaces, European National Metrology Institutes (NMIs) have been developing ultra-high precision machines having the ability to measure aspherical lenses with an uncertainty of few tens of nanometers. The fitting of the acquired aspherical datasets onto their corresponding theoretical model should be achieved at the same level of precision. In this article, three fitting algorithms are investigated: the Limited memory-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), the Levenberg–Marquardt (LM) and one variant of the Iterative Closest Point (ICP). They are assessed based on their capacities to converge relatively fast to achieve a nanometric level of accuracy, to manage a large volume of data and to be robust to the position of the data with respect to the model. Nev-ertheless, the algorithms are first evaluated on simulated datasets and their performances are studied. The comparison of these algorithms is extended on measured datasets of an aspherical lens. The results validate the newly used method for the fitting of aspherical surfaces and reveal that it is well adapted, faster and less complex than the LM or ICP methods.EMR

    Reconstruction of freeform surfaces for metrology

    Get PDF
    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks® or Geomagic®). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces.EMR

    Fast B-Spline 2D Curve Fitting for unorganized Noisy Datasets

    Get PDF
    In the context of coordinate metrology and reverse engineering, freeform curve reconstruction from unorganized data points still offers ways for improvement. Geometric convection is the process of fitting a closed shape, generally represented in the form of a periodic B-Spline model, to data points [WPL06]. This process should be robust to freeform shapes and convergence should be assured even in the presence of noise. The convection's starting point is a periodic B-Spline polygon defined by a finite number of control points that are distributed around the data points. The minimization of the sum of the squared distances separating the B-Spline curve and the points is done and translates into an adaptation of the shape of the curve, meaning that the control points are either inserted, removed or delocalized automatically depending on the accuracy of the fit. Computing distances is a computationally expensive step in which finding the projection of each of the data points requires the determination of location parameters along the curve. Zheng et al [ZBLW12] propose a minimization process in which location parameters and control points are calculated simultaneously. We propose a method in which we do not need to estimate location parameters, but rather compute topological distances that can be assimilated to the Hausdorff distances using a two-step association procedure. Instead of using the continuous representation of the B-Spline curve and having to solve for footpoints, we set the problem in discrete form by applying subdivision of the control polygon. This generates a discretization of the curve and establishes the link between the discrete point-to-curve distances and the position of the control points. The first step of the association process associates BSpline discrete points to data points and a segmentation of the cloud of points is done. The second step uses this segmentation to associate to each data point the nearest discrete BSpline segment. Results are presented for the fitting of turbine blades profiles and a thorough comparison between our approach and the existing methods is given [ZBLW12, WPL06, SKH98]

    Asymptotically Tight Bounds on the Time Complexity of Broadcast and Its Variants in Dynamic Networks

    Get PDF

    Brief Announcement: Broadcasting Time in Dynamic Rooted Trees is Linear

    Full text link
    We study the broadcast problem on dynamic networks with nn processes. The processes communicate in synchronous rounds along an arbitrary rooted tree. The sequence of trees is given by an adversary whose goal is to maximize the number of rounds until at least one process reaches all other processes. Previous research has shown a 3n122\lceil{\frac{3n-1}{2}}\rceil-2 lower bound and an O(nloglogn)O(n\log\log n) upper bound. We show the first linear upper bound for this problem, namely (1+2)n12.4n\lceil{(1 + \sqrt 2) n-1}\rceil \approx 2.4n. Our result follows from a detailed analysis of the evolution of the adjacency matrix of the network over time.Comment: 5 pages, 1 figure, published in PODC'22, further work: arXiv:2211.1015

    Binding Parameters of Glucose to Human Serum Albumin in the Presence of Cinnamaldehyde and Cinnamic Acid from Cinnamon Bark (Cinnamomum verum)

    Get PDF
    Eugenol, cinnamic acid and cinnamaldehyde are the main active components of essential oils of cinnamon (Cinnamomum verum). This article studies their interaction with human serum albumin (HSA). Binding site number was calculated. Thermodynamic parameters (Ka, ΔrH°, ΔrG° and ΔrS°) were also determined. The binding of glucose to HSA in the presence and absence of cinnamaldehyde, cinnamic acid and eugenol was studied by fluorescence spectroscopy. Cinnamaldehyde possesses the higher binding constant (Ka) values followed by cinnamic acid. The thermodynamic parameters indicated hydrophobic interactions for cinnamaldehyde, van der Waals interaction and hydrogen bonding for cinnamic acid. The values of binding constant Ka and binding site number (n), of glucose to HSA determined by Scatchard method, increased only in the presence of cinnamaldehyde and/or cinnamic acid. Cinnamaldehyde and/or cinnamic acid modify the structure of HSA therefore increasing the binding of glucose to the protein

    Minimierung der systematischen Anfangsverluste im SIS18

    Get PDF
    Das Ziel der vorliegenden Arbeit war, die systematischen Anfangsverluste im SIS18 zu minimieren. Das SIS18 soll als Injektor für das SIS100 in der neuen geplanten FAIR-Anlage eingesetzt werden und dafür die Strahlintensität erhöht werden. Eine wesentliche Rolle spielen das dynamische Vakuum im SIS18 und die anfänglichen Strahlverluste, verursacht durch Multiturn-Injektions- (MTI) oder HF-Einfangsverluste. Um den dynamischen Restgasdruck im SIS18 zu stabilisieren, müssen diese systematischen Anfangsverluste minimiert werden. Strahlteilchen, welche auf der Vakuumkammerwand verloren gehen, führen durch ionenstimulierte Desorption zu einem lokalen Druckanstieg. Dies wiederum erhöht die Wahrscheinlichkeit für Stöße zwischen Restgasteilchen und Strahlionen, wodurch diese umgeladen werden können und nach einem dispersiven Element (Dipol) auf der Vakuumkammer verloren gehen. Dies produziert einen weiteren lokalen Druckanstieg und verursacht eine massive Erhöhung der Umladungsraten. Eine Möglichkeit, die anfänglichen Verluste zu minimieren bzw. zu kontrollieren, ist die MTI-Verluste auf den Transferkanal (TK) zu verlagern, da dort ein Druckanstieg den umlaufenden Strahl im SIS18 nicht stört. Im Transferkanal werden die Strahlränder mit Hilfe von Schlitzen beschnitten und somit eine scharf definierte Phasenraumfläche erzeugt. ..
    corecore