12 research outputs found

    Total and tropospheric ozone changes: observations and numerical modelling

    Get PDF
    A survey has been made of total and tropospheric ozone dynamics in the context of its impacts on climate, human health and ecosystems. Observation data on total ozone content (TOZ) in the atmosphere and relevant numerical modelling results have been discussed as well as similar information for tropospheric ozone, whose formation and changes are being determined by quite different causes. A necessity has been emphasized to get more adequate global observational data on TOZ and tropospheric ozone (this is especially important in the latter case, because information on tropospheric ozone is far from being complete). Unsolved problems relevant to both total and tropospheric ozone have been briefly considered

    Pangolins in global camera trap data: Implications for ecological monitoring

    Get PDF
    Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (<0.05) for all species. Occupancy was associated with distance from rivers for M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts

    Pangolins in Global Camera Trap Data: Implications for Ecological Monitoring

    Get PDF
    Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts

    The impact of intraguild competition with lion Panthera leo on leopard Panthera pardus behavioural ecology

    No full text
    Single-species research dominates the field of ecology; however there is a growing appreciation of the importance of a multi-species approach to holistic conservation. Carnivores exert a top-down control on other species, and are vital components of stable ecosystem functioning. Physiologically adapted for predation upon other animals, competition between carnivores can be particularly aggressive; frequently resulting in mortality, and even population suppression. Big cat research has historically focused on those species that are most easily observable; in particular the lion Panthera leo. The majority of the Felidae however are secretive and elusive, and receive relatively little scientific attention. In particular, there are few data available that measure the effect of direct intraguild interactions between carnivores. Using leopards Panthera pardus as a model species, this research aimed to investigate the impact of lions on the behavioural ecology of a socially subordinate carnivore. Leopards are the most abundant large carnivore in Africa, and have the largest global range of all felids; their ecological niche overlapping with that of both lions and tigers. The knowledge gained from examining their competitive interactions is therefore widely relevant, and may be applicable to other subordinate carnivore species that remain unstudied. Biotelemetry and camera-trap data were modelled using novel algorithms to show that lions impact on leopard population density, demographics and spatial ecology. Faecal analyses suggest that dietary niche segregation may facilitate sympatry. These results indicate the level of impact that large carnivores can exert over smaller species, and the potential for a focus on single-species conservation to undermine holistic conservation. The manifestation of intraguild competition has a significant influence on an animal’s ecology; leopards are generalist species that cope with persecution by adapting their behaviour and niche. Ecological specialists may not fare as well under competitive pressure, and proactive conservation initiatives may be required for endangered species.</p

    The impact of intraguild competition with lion Panthera leo on leopard Panthera pardus behavioural ecology

    No full text
    Single-species research dominates the field of ecology; however there is a growing appreciation of the importance of a multi-species approach to holistic conservation. Carnivores exert a top-down control on other species, and are vital components of stable ecosystem functioning. Physiologically adapted for predation upon other animals, competition between carnivores can be particularly aggressive; frequently resulting in mortality, and even population suppression. Big cat research has historically focused on those species that are most easily observable; in particular the lion Panthera leo. The majority of the Felidae however are secretive and elusive, and receive relatively little scientific attention. In particular, there are few data available that measure the effect of direct intraguild interactions between carnivores. Using leopards Panthera pardus as a model species, this research aimed to investigate the impact of lions on the behavioural ecology of a socially subordinate carnivore. Leopards are the most abundant large carnivore in Africa, and have the largest global range of all felids; their ecological niche overlapping with that of both lions and tigers. The knowledge gained from examining their competitive interactions is therefore widely relevant, and may be applicable to other subordinate carnivore species that remain unstudied. Biotelemetry and camera-trap data were modelled using novel algorithms to show that lions impact on leopard population density, demographics and spatial ecology. Faecal analyses suggest that dietary niche segregation may facilitate sympatry. These results indicate the level of impact that large carnivores can exert over smaller species, and the potential for a focus on single-species conservation to undermine holistic conservation. The manifestation of intraguild competition has a significant influence on an animal’s ecology; leopards are generalist species that cope with persecution by adapting their behaviour and niche. Ecological specialists may not fare as well under competitive pressure, and proactive conservation initiatives may be required for endangered species.This thesis is not currently available in OR

    Increased foraging success or competitor avoidance? Diel activity of sympatric large carnivores

    No full text
    The temporal activity of sympatric carnivores reflects trade-offs between avoidance of competitors and predators, and optimizing foraging success. Closely related species may experience greater interspecific competition for resources due to similar morphologies and ecological requirements. Although the mechanisms by which lions (Panthera leo) and leopards (Panthera pardus) partition diet and habitat have been investigated, the degree to which they avoid each other temporally with possible compromises for foraging success remains less clear. In a wildlife conservancy in Zimbabwe, we used camera trap data to investigate the factors influencing the diel activity of lions and leopards. We modeled diel activity using circular statistics and calculated coefficients of overlap using kernel density functions and non-negative trigonometric sums models. Both leopards and lions were predominately nocturnal, with highly overlapping diel activity. The diel activity of leopards also coincided with that of some prey species, especially common duikers (Sylvicapra grimmia). Therefore, we suggest that leopards may prioritize hunting success and prey acquisition over diel avoidance of dominant competitors like lions

    Listening to lions : animal-borne acoustic sensors improve bio-logger calibration and behaviour classification performance

    Get PDF
    Efforts to better understand patterns of animal behaviour have often been restricted by several environmental, human and experimental limitations associated with the collection of animal behavioural data. The introduction of new bio-logging technology has offered an alternative means of recording animal behaviour continuously and is being used in an increasing number of studies. Accurately calibrating these bio-loggers, however, still remains a challenge in many cases. Using lions as an example species, we test how audio recordings from animal-borne acoustic sensors can improve calibration and behaviour classification. Through a collaborative effort between computer scientists, engineers, and zoologists, custom designed acoustic bio-loggers were fitted to eight lions and recorded audio simultaneously with accelerometer and magnetometer data. Audio recordings were then used as the source of ground truth to train random forest classification models as well as to provide additional predictor variables for behaviour classification. We demonstrated near-perfect classification performance for five lion behaviour classes when all component variables were combined, with an average per- class precision of 98.5%. Using accelerometer features only, the audio-trained classifier predicted behaviours with an average per-class precision of 94.3%. On-animal audio recordings are therefore able to provide a valuable source of ground-truth for calibrating bio-loggers while also offering additional predictive features for increasing the accuracy of behaviour classification. This technological innovation has wide ranging application and provides a useful tool for behavioural ecologists wishing to collect fine scale behavioural data for animal research and conservation.Audio 1 | Eating.Audio 2 | Drinking.Audio 3 | Fast.Audio 4 | Slow.Audio 5 | Stationary.The John Fell Fund and the Beit Trust.http://www.frontiersin.org/Ecology_and_Evolutionam2019Mammal Research InstituteZoology and Entomolog

    Vocal discrimination of African lions and its potential for collar-free tracking

    No full text
    Previous research has shown that African lions (Panthera leo) have the ability to discriminate between conspecific vocalisations, but little is known about how individual identity is conveyed in the spectral structure of roars. Using acoustic – accelerometer biologgers that allow vocalisations to be reliably associated with individual identity, we test for vocal individuality in the fundamental frequency (f0) of roars from 5 male lions, firstly by comparing simple f0 summary features and secondly by modelling the temporal pattern of the f0 contour. We then assess the application of this method for discriminating between individuals using passive acoustic monitoring. Results indicate that f0 summary features only allow for vocal discrimination with 70.7% accuracy. By comparison, vocal discrimination can be achieved with an accuracy of 91.5% based on individual differences in the temporal pattern of the f0 sequence. We further demonstrate that passively recorded lion roars can be localised and differentiated with similar accuracy. The existence of individually unique f0 contours in lion roars and their relatively lower attenuation indicates a likely mechanism enabling individual lions to identify conspecifics over long distances. These differences can be exploited by researchers to track individuals across the landscape and thereby supplement conventional lion monitoring approaches.The John Fell Fund, University of Oxford and the Beit Trust.http://www.tandfonline.comtoc/tbio202021-10-02hj2021Mammal Research InstituteZoology and Entomolog

    Vocal discrimination of African lions and its potential for collar-free tracking

    No full text
    International audiencePrevious research has shown that African lions (Panthera leo) have the ability to discriminate between conspecific vocalisations, but little is known about how individual identity is conveyed in the spectral structure of roars. Using acoustic – accelerometer biologgers that allow vocalisations to be reliably associated with individual identity, we test for vocal individuality in the fundamental frequency (f0) of roars from 5 male lions, firstly by comparing simple f0 summary features and secondly by modelling the temporal pattern of the f0 contour. We then assess the application of this method for discriminating between individuals using passive acoustic monitoring. Results indicate that f0 summary features only allow for vocal discrimination with 70.7% accuracy. By comparison, vocal discrimination can be achieved with an accuracy of 91.5% based on individual differences in the temporal pattern of the f0 sequence. We further demonstrate that passively recorded lion roars can be localised and differentiated with similar accuracy. The existence of individually unique f0 contours in lion roars and their relatively lower attenuation indicates a likely mechanism enabling individual lions to identify conspecifics over long distances. These differences can be exploited by researchers to track individuals across the landscape and thereby supplement conventional lion monitoring approaches
    corecore