2,932 research outputs found

    Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma

    Get PDF
    Astaxanthin (3,3'-dihydroxy-b,b'-carotene-4,4'-dione) is carotenoid of high market value whose demand has increased in such fields as aquaculture, pharmaceutical supplements and natural coloring. Cell disruption is the first step for isolating intracellular materials and it depends on the cell wall permeability. In order to maximize the  recovery of astaxanthin from Phaffia rhodozyma NRRL-Y17268, drying and freeze pretreatments were tested by different cell disruption methods: abrasion with celite, glass pearls in vortex agitator, ultrasonic waves, sodium  carbonate (Na2CO3) and dimethyl sulfoxide (DMSO). The method with Na2CO3 was not effective; meanwhile, the agitator with glass pearls, the abrasion with celite and the ultrasonic waves were found as promising for future  studies. As a result, the DMSO in freeze-dried biomass with 4 process cycles and biomass/DMSO relation of 0.025 g/ml was found to be the most efficient for analytical determination, increasing about up to 25 times the astaxanthin recovery.Key words: Carotenoids, yeast, chemical disruption, dimethyl sulfoxide

    Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models

    Get PDF
    Background: Early revascularization of ischemic organs is key to improving outcomes, yet consequent reperfusion injury may be harmful. Reperfusion injury is largely attributed to excess mitochondrial production of reactive oxygen species (ROS). Sulfide inhibits mitochondria and reduces ROS production. Ammonium tetrathiomolybdate (ATTM), a copper chelator, releases sulfide in a controlled and novel manner, and may offer potential therapeutic utility. Methods and findings: In vitro, ATTM releases sulfide in a time-, pH-, temperature-, and thiol-dependent manner. Controlled sulfide release from ATTM reduces metabolism (measured as oxygen consumption) both in vivo in awake rats and ex vivo in skeletal muscle tissue, with a superior safety profile compared to standard sulfide generators. Given intravenously at reperfusion/resuscitation to rats, ATTM significantly reduced infarct size following either myocardial or cerebral ischemia, and conferred survival benefit following severe hemorrhage. Mechanistic studies (in vitro anoxia/reoxygenation) demonstrated a mitochondrial site of action (decreased MitoSOX fluorescence), where the majority of damaging ROS is produced. Conclusions: The inorganic thiometallate ATTM represents a new class of sulfide-releasing drugs. Our findings provide impetus for further investigation of this compound as a novel adjunct therapy for reperfusion injury

    The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii

    Get PDF
    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.This work was supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal Grant PTDC/AGR-ALI/102608/2008 and by project FCOMP-01-0124-FEDER- 007047 and by FEDER through POFC - COMPETE and national funds from FCT - project PEst-C/BIA/UI4050/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore