34 research outputs found

    El papel del equipo de Enfermería en el Centro de Atención Psicosocial

    Get PDF
    Objetivo: describir la inserción del equipo de enfermería en un Centro de Atención Psicosocial por Alcohol y Drogas III. Metodología: investigación cualitativa y descriptiva, diseñada como estudio de caso. Se colectó a los datos por medio de una entrevista semiestructurada con enfermeros y técnicos de enfermería. El análisis de los datos se basó en los trabajos de Bardin. Resultados: ante la ausencia de empleador y el factor de inserción de dos profesionales de enfermería, no se estudia el servicio. Es decir, el cuidado de enfermería tiene un plan individualizado y contextualizado para dos disciplinas, contemplando y articulando el trabajo de Enfermería como los servicios del territorio. Conclusión: el estudio muestra que el papel del equipo de enfermería es fundamental para consolidar la Reforma Psiquiátrica y expandir el servicio de salud mental en el país, promoviendo y contribuyendo para reinsertar y mantener en el territorio las personas que reciben atención, superando la antigua atribución de vigilancia y control.Objective: to describe the insertion of the Nursing team in a Psychosocial Care Center for Alcohol and Drugs III. Methodology: a qualitative, descriptive research designed as a case study. Data collection used semi-structured interviews with nurses and nursing technicians. Data analysis was subsidized by Bardin’s work. Results: the need for employment is a factor for the insertion of Nursing professionals in the service studied. Nursing care has individualized and contextualized planning in the reality of the subjects, contemplating and articulating the work of Nursing with the services of the territory. Conclusion: the role of the nursing team becomes fundamental to consolidate the Psychiatric Reform and the expansion of mental health services in the country, promoting and contributing to the reinsertion and maintenance of the people assisted in the territory, overcoming its old attribution of surveillance and control.Objetivo: descrever a inserção da equipe de Enfermagem em um Centro de Atenção Psicossocial Álcool e Drogas III. Metodologia: pesquisa qualitativa, descritiva e delineada como estudo de caso. A coleta de dados utilizou entrevista  semiestruturada com enfermeiros e técnicos de Enfermagem. A análise de dados foi subsidiada pela obra de Bardin. Resultados: a necessidade de emprego é um fator de inserção dos profissionais de Enfermagem no serviço estudado. O cuidado de Enfermagem tem planejamento individualizado e contextualizado na realidade dos sujeitos, contemplando e articulando o trabalho de Enfermagem com os serviços do território. Conclusão: o papel da equipe de Enfermagem torna-se fundamental para consolidar a Reforma Psiquiátrica e a expansão do serviço de saúde mental no país, promovendo e contribuindo para a reinserção e manutenção das pessoas atendidas no território, superando sua antiga atribuição de vigilância e controle

    Beam Studies of the Segmented Resistive WELL: a Potential Thin Sampling Element for Digital Hadron Calorimetry

    Full text link
    Thick Gas Electron Multipliers (THGEMs) have the potential of constituting thin, robust sampling elements in Digital Hadron Calorimetry (DHCAL) in future colliders. We report on recent beam studies of new single- and double-THGEM-like structures; the multiplier is a Segmented Resistive WELL (SRWELL) - a single-faced THGEM in contact with a segmented resistive layer inductively coupled to readout pads. Several 10×\times10 cm2^2 configurations with a total thickness of 5-6 mm (excluding electronics) with 1 cm2^2 pads coupled to APV-SRS readout were investigated with muons and pions. Detection efficiencies in the 98% range were recorded with average pad-multiplicity of \sim1.1. The resistive anode resulted in efficient discharge damping, with potential drops of a few volts; discharge probabilities were 107\sim10^{-7} for muons and 106\sim10^{-6} for pions in the double-stage configuration, at rates of a few kHz/cm2^2. Further optimization work and research on larger detectors are underway.Comment: Presented at the 13th13^{th} Vienna Conference on Instrumentation, February 2013 and submitted to its proceeding

    LIME -- a gas TPC prototype for directional Dark Matter search for the CYGNO experiment

    Full text link
    The CYGNO experiment aims at the development of a large gaseous TPC with GEM-based amplification and an optical readout by means of PMTs and scientific CMOS cameras for 3D tracking down to O(keV) energies, for the directional detection of rare events such as low mass Dark Matter and solar neutrino interactions. The largest prototype built so far towards the realisation of the CYGNO experiment demonstrator is the 50 L active volume LIME, with 4 PMTs and a single sCMOS imaging a 33×\times33 cm\textsuperscript{2} area for 50 cm drift, that has been installed in underground Laboratori Nazionali del Gran Sasso in February 2022. We will illustrate LIME performances as evaluated overground in Laboratori Nazionali di Frascati by means of radioactive X-ray sources, and in particular the detector stability, energy response and energy resolution. We will discuss the MC simulation developed to reproduce the detector response and show the comparison with actual data. We will furthermore examine the background simulation worked out for LIME underground data taking and illustrate the foreseen expected measurement and results in terms of natural and materials intrinsic radioactivity characterisation and measurement of the LNGS underground natural neutron flux. The results that will be obtained by underground LIME installation will be paramount in the optimisation of the CYGNO demonstrator, since this is foreseen to be composed by multiple modules with the same LIME dimensions and characteristics

    Technical Design Report - TDR CYGNO-04/INITIUM

    Get PDF
    The aim of this Technical Design Report is to illustrate the technological choices foreseen to be implemented in the construction of the CYGNO-04 demonstrator, motivate them against the experiment physics goals of CYGNO-30 and demonstrate the financial sustainability of the project. CYGNO-04 represents PHASE 1 of the long term CYGNO roadmap, towards the development of large high precision tracking gaseous Time Projection Chamber (TPC) for directional Dark Matter searches and solar neutrino spectroscopy. The CYGNO project1 peculiarities reside in the optical readout of the light produced during the amplification of the primary ionization electrons in a stack of triple Gas Electron Multipliers (GEMs), thanks to the nice scintillation properties of the chosen He:CF4 gas mixture. To this aim, CYGNO is exploiting the fast progress in commercial scientific Active Pixel Sensors (APS) development for highly performing sCMOS cameras, whose high granularity and sensitivity allow to significantly boost tracking, improve particle identification and lower the energy threshold. The X-Y track project obtained from the reconstruction of the sCMOS images is combined with a PMT measurement to obtain a full 3D track reconstruction. In addition, several synergic R&Ds based on the CYGNO experimental approach are under development in the CYGNO collaboration (see Sec 2) to further enhance the light yield by means of electro luminescence after the amplification stage, to improve the tracking performances by exploiting negative ion drift operation within the INITIUM ERC Consolidator Grant, and to boost the sensitivity to O(GeV) Dark Matter masses by employing hydrogen rich target towards the development of PHASE 2 (see Sec. 1.2). While still under optimization and subject to possible significant improvements, the CYGNO experimental approach performances and capabilities demonstrated so far with prototypes allow to foresee the development of an O(30) m3 experiment by 2026 for a cost of O(10) MEUROs. A CYGNO-30 experiment would be able to give a significant contribution to the search and study of Dark Matter with masses below 10 GeV/c2 for both SI and SD coupling. In case of a Dark Matter observation claim by other experiments, the information provided by a directional detector such as CYGNO would be fundamental to positively confirm the galactic origin of the allegedly detected Dark Matter signal. CYGNO-30 could furthermore provide the first directional measurement of solar neutrinos from the pp chain, possibly extending to lower energies the Borexino measurement2. In order to reach this goal, the CYGNO project is proceeding through a staged approach. The PHASE 0 50 L detector (LIME, recently installed underground LNGS) will validate the full performances of the optical readout via APS commercial cameras and PMTs and the Montecarlo simulation of the expected backgrounds. The full CYGNO-04 demonstrator will be realized with all the technological and material choices foreseen for CYGNO-30, to demonstrate the scalability of the experimental approach and the potentialities of the large PHASE 2 detector to reach the expected physics goals. The first PHASE 1 design anticipated a 1 m3 active volume detector with two back-to-back TPCs with a central cathode and 500 mm drift length. Each 1 m2 readout area would have been composed by 9 + 9 readout modules having the LIME PHASE 0 dimensions and layout. Time (end of INITIUM project by March 2025) and current space availability at underground LNGS (only Hall F) forced the rescaling of the PHASE 1 active volume and design to a 0.4 m3, hence CYGNO-04. CYGNO-04 will keep the back-to-back double TPC layout with 500 mm drift length each, but with an 800 x 500 mm2 readout area covered by a 2 + 2 modules based on LIME design. The reduction of the detector volume has no impact on the technological objectives of PHASE 1, since the modular design with central cathode, detector materials and shieldings and auxiliary systems are independent of the total volume. The physics reach (which is a byproduct of PHASE 1 and NOT an explicit goal) will be only very partially reduced (less than a factor 2 overall) since a smaller detector volume implies also a reduced background from internal materials radioactivity. In addition, the cost reduction of CYGNO-04 of about 1⁄3 with respect to CYGNO-1 illustrated in the CDR effectively makes the overall project more financially sustainable (see CBS in the last section). In summary this document will explain: the physical motivation of the CYGNO project and the technical motivations of the downscale of the PHASE 1 to CYGNO-04, 400 liters of active volume, with respect to the demonstrator presented in the CDR; the results of R&D and the Montecarlo expectations for PHASE 0; the technical choices, procedures and the executive drawings of CYGNO-04 in the Hall F of the LNGS; safety evaluations and the interference/request to the LNGS services; Project management, WBS/WBC, WP, GANTT, ec

    The CYGNO Experiment

    Get PDF
    The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, a detector sensitive to incoming particle direction will be crucial in the case of DM discovery to open the possibility of studying its properties. Gaseous time projection chambers (TPC) with optical readout are very promising detectors combining the detailed event information provided by the TPC technique with the high sensitivity and granularity of latest-generation scientific light sensors. The CYGNO experiment (a CYGNus module with Optical readout) aims to exploit the optical readout approach of multiple-GEM structures in large volume TPCs for the study of rare events as interactions of low-mass DM or solar neutrinos. The combined use of high-granularity sCMOS cameras and fast light sensors allows the reconstruction of the 3D direction of the tracks, offering good energy resolution and very high sensitivity in the few keV energy range, together with a very good particle identification useful for distinguishing nuclear recoils from electronic recoils. This experiment is part of the CYGNUS proto-collaboration, which aims at constructing a network of underground observatories for directional DM search. A one cubic meter demonstrator is expected to be built in 2022/23 aiming at a larger scale apparatus (30 m3^3--100 m3^3) at a later stage

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    O micróbio protagonista: notas sobre a divulgação da bacteriologia na Gazeta Médica da Bahia, século XIX

    Full text link
    corecore