6,206 research outputs found

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset

    Estimation of the methane emission factor for the Italian Mediterranean buffalo

    Get PDF
    In order to contribute to the improvement of the national greenhouse gas emission inventory, this work aimed at estimating a country-specific enteric methane (CH4) emission factor for the Italian Mediterranean buffalo. For this purpose, national agriculture statistics, and information on animal production and farming conditions were analysed, and the emission factor was estimated using the Tier 2 model of the Intergovernmental Panel on Climate Change. Country-specific CH4 emission factors for buffalo cows (630 kg body weight, BW) and other buffalo (313 kg BW) categories were estimated for the period 1990–2004. In 2004, the estimated enteric CH4 emission factor for the buffalo cows was 73 kg/head per year, whereas that for other buffalo categories it was 56 kg/head per year. Research in order to determine specific CH4 conversion rates at the predominant production system is suggested

    Sensitivity-bandwidth limit in a multi-mode opto-electro-mechanical transducer

    Full text link
    An opto--electro--mechanical system formed by a nanomembrane capacitively coupled to an LC resonator and to an optical interferometer has been recently employed for the high--sensitive optical readout of radio frequency (RF) signals [T. Bagci, \emph{et~al.}, Nature {\bf 507}, 81 (2013)]. Here we propose and experimentally demonstrate how the bandwidth of such kind of transducer can be increased by controlling the interference between two--electromechanical interaction pathways of a two--mode mechanical system. With a proof--of--principle device \new{operating at room temperature, we achieve a sensitivity of 300 nV/Hz^(1/2) over a bandwidth of 15 kHz in the presence of radiofrequency noise, and an optimal shot-noise limited sensitivity of 10 nV/Hz^(1/2) over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multi--mode transducer can achieve a bandwidth} significantly larger than that of a single-mode one

    Editorial: Structure-based drug design for diagnosis and treatment of neurological diseases

    Get PDF
    This editorial and the ebook are based upon collaboration under COST Action CM1103 (NEURODRUG), supported by COST (European Cooperation in Science and Technology).Publisher PDFPeer reviewe

    Quantum dynamics of a vibrational mode of a membrane within an optical cavity

    Full text link
    Optomechanical systems are a promising candidate for the implementation of quantum interfaces for storing and redistributing quantum information. Here we focus on the case of a high-finesse optical cavity with a thin vibrating semitransparent membrane in the middle. We show that robust and stationary optomechanical entanglement could be achieved in the system, even in the presence of nonnegligible optical absorption in the membrane. We also present some preliminary experimental data showing radiation-pressure induced optical bistability.Comment: 6 pages, 2 figures. Work presented at the conference QCMC 2010 held on 19-23 July 2010 at the University of Queensland, Brisbane, Australi

    Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane

    Full text link
    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.Comment: 14 pages, 7 figure

    Neurobiology and neuropharmacology of monoaminergic systems

    Get PDF
    This Special Issue, and the collaboration among the researchers that contributed to it, was initiated by EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”.PostprintPeer reviewe
    • …
    corecore