
Proc. of IEEE DMGrid 2004, Workshop on Data Mining and Grid of IEEE ICDM 2004, Int. Conf. on Data Mining, Brighton (UK), 1-4 Nov., 2004

Distributed Mining of Molecular Fragments

Giuseppe Di Fatta
ICAR-CNR, Consiglio Nazionale delle Ricerche

Viale delle Scienze, 90128 Palermo, Italy
and Konstanz University, Germany

difatta@pa.icar.cnr.it

Michael R. Berthold
Konstanz University,

Dept. of Computer and Information Science
78457 Konstanz, Germany

Michael.Berthold@uni-konstanz.de

Abstract

In real world applications sequential algorithms of
data mining and data exploration are often unsuitable for
datasets with enormous size, high-dimensionality and com-
plex data structure. Grid computing promises unprece-
dented opportunities for unlimited computing and storage
resources. In this context there is the necessity to de-
velop high performance distributed data mining algorithms.
However, the computational complexity of the problem and
the large amount of data to be explored often make the de-
sign of large scale applications particularly challenging. In
this paper we present the first distributed formulation of
a frequent subgraph mining algorithm for discriminative
fragments of molecular compounds. Two distributed ap-
proaches have been developed and compared on the well-
known National Cancer Institute’s HIV-screening dataset.
We present experimental results on a small-scale comput-
ing environment.

1. Introduction

The main goal of life sciences research is the discov-
ery of new drugs. All major pharma companies rely on
the introduction of several new, highly successful new drugs
(so-called blockbuster medications) per year in order to fi-
nance the extremely expensive and lengthy drug discovery
process. Typically, it takes more than 10 years until a newly
identified drug candidate reaches the market. Despite ad-
vances in the analysis of the human genome and better un-
derstandings of the underlying biological interactions, one
crucial step in drug discovery remains the so-called High
Throughput Screening and the subsequent analysis of the
generated data. In this screening, hundreds of thousands
of potential drug candidates are automatically tested for a
desired activity, such as blocking a specific binding site
or attachment to a particular protein. This activity is be-
lieved to be connected to, for example, the inhibition of a

specific disease. Once all these candidates have been au-
tomatically screened it is necessary to concentrate on a few
hundred promising candidates for further, more careful (and
cost-intensive) analysis. Many tools concentrate on tech-
niques that allow the biochemists to explore the results of
the screening analysis, to determine which molecules to in-
vestigate further. This step is crucial for the success of the
entire drug discovery process. Losing a potential block-
buster drug here can result in a loss of up to one billion euro
at a later stage. A promising approach focuses on the analy-
sis of the molecular structure and the extraction of pieces of
these molecules that are correlated with activity. These so-
called discriminative fragments can then be used to directly
identify groups of promising molecules by the user because
of the representation, which is immediately understandable
to chemists and biologists. Discriminative molecular frag-
ment discovery can be formulated as a frequent subgraph
mining (FSM) problem [16] in analogy to the association
rule mining (ARM) problem [2, 19]. While in ARM the
main structure of the data is a list of items (itemset) and the
basic operation is the subset test, in FSM graph and sub-
graphs isomorphism is the intrinsic nature of the problem.

Sequential algorithms are limited by single processor
computing resources and are often unsuitable for extremely
large datasets (millions of molecules) and unlimited size of
the fragments that can be discovered. Quite obviously, par-
allel approaches to this type of problem are a promising
alternative to the current sequential algorithms, both with
respect to storage and time limitations.

Recently, undergoing efforts for Grid computing mid-
dleware development [10, 11] have promised unprece-
dented opportunities for unlimited computing and storage
resources. In this context it is necessary to develop high
performance distributed data mining algorithms.

A Grid environment [9, 13] provides high performance
computing facilities and transparent access to them in spite
of their remote location, different administrative domains
and hardware and software heterogeneous characteristics.
A Grid is a combination of distributed and heterogeneous

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/9466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

computing, storage and communication resources for exe-
cuting large-scale applications. A distinction is sometimes
made between Data Grids and Computational Grids. Com-
putational Grids normally deal with large-scale computa-
tionally intensive problems on small data sets, while Data
Grids deal with large-scale data-intensive problems on large
amounts of data, i.e. typical data mining problems. In
the context of molecular fragment analysis both aspects are
present. This makes the effective exploitation of a large-
scale computational and storage system a very complex
task.

In this paper we present the first distributed formulation
for the frequent subgraph mining problem. The algorithm
has been applied to the analysis of a set of real molecu-
lar compounds, the well-known National Cancer Institute’s
HIV-screening dataset.
The rest of this paper is structured as follows. In the next
section we discuss related problems and approaches to the
molecular fragment mining problem. In section 3 we de-
fine the problem and briefly describe a serial algorithm on
which our distributed approach is based. In section 4 we
present two distributed implementations of the sequential
mining algorithm. Section 5 describes the experiments we
conducted to verify the performance of the distributed ap-
proaches. Finally, we provide concluding remarks.

2. Related works

A number of approaches to find discriminative molecular
fragments have recently been published [8, 18, 4] but they
are all limited by the complexity of the underlying problem.
Finding frequent subgraphs in a set of graphs is computa-
tionally extremely expensive. The subgraph isomorphism
test is known to be an NP-complete problem for general
graphs. Some of these algorithms can therefore operate
on very large molecular databases but only find small frag-
ments [8, 18] whereas others can find larger fragments but
are limited by the maximum number of molecules they can
analyse [4, 15].

Finding discriminative fragments in a set of molecules
can be seen as analysing the space of all possible frag-
ments, that is all subgraphs that can be found in the en-
tire molecular database. Obviously this set of all existing
fragments is enormous, a single molecule of average size
can already contain in the order of hundred thousand dif-
ferent fragments. Existing methods to find discriminative
fragments usually organize the space of all possible frag-
ments in a lattice, which models subgraph relationships, that
is, edges connect fragments that differ by exactly one atom
and/or bond. The search then reduces to traversing this lat-
tice and reporting all fragments that fulfil the desired cri-
teria. Based on existing data mining algorithms for market
basket analysis [2, 19] these methods conduct depth-first [4]

or breadth-first searches [18, 8].
None of these algorithms in a single processor can be

used for extremely large datasets (millions of molecules)
and unlimited size of the fragments that can be discovered.
Quite obviously, parallel approaches to this type of problem
are a promising alternative to the current sequential algo-
rithms. In recent years several parallel and distributed al-
gorithms have been proposed for the association rule mi-
ning problem (D-ARM) [20]. However, currently no paral-
lel and distributed FSM algorithms have been proposed in
the literature. Distributing such search algorithms on paral-
lel resources is non-trivial. The complexity of the problem
and the large amount of data to be explored make parallel
formulations of these methods extremely challenging as we
will discuss later in more detail.

3. Molecular fragment mining (MoFa)

The problem of selecting discriminative molecular
fragments in a set of molecules can be formulated in terms
of frequent subgraph mining in a set of graphs. Mole-
cules are represented by attributed graphs, in which each
vertex represents an atom and each edge a bond between
atoms. Each vertex carries attributes that indicate the atom
type (i.e., the chemical element), a possible charge, and
whether it is part of a ring. Each edge carries an attribute
that indicates the bond type (single, double, triple, or
aromatic). Frequent molecular fragments are subgraphs
that have a certain minimum support in a given set of
graphs, i.e., are part of at least a certain percentage of the
molecules. However, in order to restrict the search space,
only connected substructures, i.e., graphs having only one
connected component, are considered. Discriminative
molecular fragments are contrast substructures, which are
frequent in a predefined set of molecules and infrequent in
the complement of this subset. In this case two parameters
are required: a minimum support (minSupp) for the
focus subset and a maximum support (maxSupp) for the
complement.

The distributed approach presented in this paper is based
on the sequential algorithm (MoFa) described in [4]. The
algorithm organizes the space of all possible fragments in
an efficient search tree. An example of such a search tree is
depicted in Figure 1. Each possible subgraph of the mole-
cular structures is evaluated in terms of the number of em-
beddings that are present in the molecular database.

The algorithm is based on an exhaustive depth-first
search strategy. Each node of the search tree represents
a candidate frequent fragment. A search tree node eva-
luation comprises the generation of all the embeddings of
the fragment in the molecules. The embedding list allows
both a fast computation of the fragment support in the ac-

2

Figure 1. Molecular fragment search tree

tive and inactive molecules and a fast extension to bigger
fragments. When a fragment meets the minimum support
criterion, it is extended by one bond to generate new search
tree nodes. When the fragment meets both criteria of min-
imum support in active molecules and maximum support
in the inactive molecules, it is then reported as a discrimi-
native frequent fragment. Moreover, those frequent frag-
ments which have the same support values are further fil-
tered. Fragments, which are subgraphs of other frequent
fragments having equal support values, are not considered
interesting and discarded.

The search starts from a root node with a single atom
and it is iterated for each frequent atom type. The algo-
rithm prunes the DFS tree according to three criteria. The
support-based pruning exploits the anti-monotone property
of fragment support. The size-based pruning exploits the
anti-monotone property of fragment size. And, finally, a
partial structural pruning is based on a local order of atoms
and bonds. For further details on the algorithm we refer to
[4].

4. Distributed molecular fragment mining

Parallel and distributed approaches are a promising alter-
native to the current sequential algorithms. Sequential algo-
rithms cannot provide scalability in terms of data size and
dimensionality, neither better quality of the results (wider
range for user parameters) nor dramatically better running
time performance. In this section we present the first dis-
tributed approach for the molecular fragment mining that is
based on the sequential algorithm described in the previous
section.

In the first distributed approach we are presenting, we

adopt a search space partitioning strategy along with a dy-
namic load balancing (DLB). Thereafter, we introduce a se-
cond approach whereby we combine the search space parti-
tioning with a data partitioning strategy.

Our ultimate target architecture is a large-scale multi-
domain computational environment, i.e. a Grid infrastruc-
ture. So, our general approach is to partition the problem
into independent subtasks in order to minimize communi-
cation and synchronization among processors. Although
we do not address the issue in this work, independent tasks
would also allow the introduction of fault tolerance mecha-
nisms more easily than in distributed applications with a
complex communication pattern.

For this reason we have adopted partitioning strategies
and discarded solutions based on a collaborative approach
among processes, such as distribution techniques similar to
ones proposed in [3, 12], which are more suited for single-
domain environments like parallel machines, networks of
workstations and hybrid/hierarchical systems. Moreover,
all the algorithms that have been proposed for D-ARM in
the past years assume a homogeneous and dedicated envi-
ronment and do not provide dynamic load balancing [20].

4.1. Search space partitioning

Partitioning a DFS tree has been widely and success-
fully adopted in many applications. In general, it is quite
straightforward to prune the search tree to generate a new
independent job (Figure 2), which can be assigned to an
idle processor. In this case no synchronization is required
among remote jobs.

Following this approach each worker has local access to
the entire dataset. This allows each miner to execute the
same algorithm of the serial approach. A job assignment

3

contains the description of the search node pruned at the
donor worker. It must contain all the information needed to
restart the search from exactly the same point in the search
space, which includes the node state to rebuild the same lo-
cal order necessary to prune the search tree as in the sequen-
tial algorithm (cfr. structural pruning in [4]). Furthermore,
the donor worker knows the exact subset of molecules in
which the fragment represented by the pruned node can ac-
tually be embedded. When the cardinality of such a subset
is not too large, a list of the molecule IDs will be added to
the job description. In this case the receiver worker can load
only the relevant molecules from the local database (DB se-
lection optimisation).

During the exploration of the search tree the embedding
list in both active and inactive molecules allows the algo-
rithm to avoid computationally expensive re-embeddings
for frequency counting in order to perform the minSupp
and maxSupp tests. The list of the embeddings in the mole-
cules allows also a fast selection (filtering) of the interesting
frequent fragments. Substructures of frequent fragments are
not interesting and not reported. The latter filtering step is
incomplete in the case of a search tree partitioning. Each
worker maintains only a local and partial list of substruc-
tures found during the execution of subtasks. Therefore,
when the master node merges the partial lists of frequent
fragments reported at the completion of each subtask, it has
to filter out all the equivalent fragments and all the frag-
ments that are substructures of other fragments as well. This
results in extra computation required by the distributed al-
gorithm. In order to avoid this computation overhead we
would have introduced extra communication and synchro-
nization. However, this computation overhead is not very
relevant because the cardinality of the list of candidate frag-
ments is typically of several orders of magnitude smaller
than the cardinality of the overall dataset.

A static partition of the search space can only be adopted
when job running times can be estimated. In our application
we cannot estimate the complexity of subtasks. For such
irregular problems it is essential to provide a dynamic load
balancing. We adopted a search tree partitioning with a self-
adaptive job-granularity based on dynamic load balancing,
which is discussed in the next section.

4.2. Dynamic load balancing

The dynamic load balancing (DLB) requirement of our
problem is related to the same requirement of several other
irregular problems based on a tree structure, e.g. problems
solved using the divide and conquer strategy and other pro-
blems based on a search tree. Several DLB techniques for
irregular problems are based on assumptions on task times
[14, 6], or the availability of workload estimations [7]. In
[14] uniform time tasks are assumed. In [6] it is assumed

that the smallest task time is comparable to or greater than
network communication time for a task. In [7] the com-
putation, first, is evenly partitioned among processors and,
successively, task migration is adopted to maintain load ba-
lance in the system.

Unfortunately, in our application none of these assump-
tions can be made. We cannot even provide minimum
or maximum bounds for the running time of subtasks. It
is quite challenging to efficiently parallelize irregular pro-
blems with such an unpredictable workload.

Moreover, in a large-scale multi-domain environment we
also have to deal with the heterogeneous and dynamic load
of processors and networks.

The DLB approach we adopted for the tests in a small-
scale computational environment is based on a centralized
job pool and the Master-Workers paradigm. The master
operates as job manager and starts a local worker with the
root node of the entire search tree. Whenever there is an
idle processor the job manager solicits a worker to prune
part of its search tree and spawn a new job description. The
job manager collects new jobs and allocates them to idle
processors upon request.

The job manager requests the generation of new jobs to
workers in order to maintain a minimum level in the job
pool. Two thresholds, minJobs and maxJobs determine
the range in which the job manager queries a worker to
spawn a new job. (In our tests these values have been set
to the number of processors and twice this number, respec-
tively.) Whenever a worker terminates a job, it sends a re-
quest for a new one. Each worker keeps also a local pool
of unprocessed jobs. At the completion of a job, the request
and reception of a new job can be overlapped to the exe-
cution of a job from the local pool. Overlapping computa-
tion with job assignment avoids most of the communication
overheads. Only the latency of the first job assignment and
the last report cannot be avoided. (In our tests we adopted a
single job buffer in each local worker.)

In problems with uniform or bounded task times the ge-
neration of either too small or too big jobs is not an issue.
In our case wrong job granularity may decrease the effi-
ciency and limit the maximum speedup. While a coarse job
granularity may induce load imbalance and bounds on the
maximum speedup, a fine granularity may decrease the dis-
tributed system efficiency and more processing nodes will
be required to reach the maximum speedup. Thus, it is im-
portant to provide an adaptive mechanism to find a good
trade off between load balancing and job granularity.

In order to accomplish this aim we introduce two sim-
ple mechanisms to avoid the generation of trivial tasks and
processor idling. The worker follows three rules to prune a
search node. The local worker must have done some work
before pruning a node and must still have some work to do
after pruning. Moreover, the new job should have enough

4

Figure 2. Search tree partitioning

support in the active compounds, thus avoiding spawning a
trivial job. A search tree node n can be pruned only if

1. depth(n) >= minDepth,

2. support(n) >= ((1 + alpha) ∗ minSupp), and

3. sibling(n) >= minSib

where alpha is a tolerance factor and sibling(n) specifies
the number of sibling nodes of n. The values of these
parameters are not critical and in our experiments we
adopted minDepth = 1 (with depth(root node) = 0),
alpha = 0.1 and minSib = 1. These rules for pruning the
search tree guarantee that the local worker does not run out
of work while donating non-trivial part of its task.

The job manager has in charge the selection of the task to
be further partitioned to generate new jobs to be assigned to
idle workers. Partitioning small subtrees clearly decreases
the overall performance of the system. Then, it would be
useful to know which task is the most complex among the
assigned tasks. But, as already mentioned, we cannot esti-
mate the complexity of a task and its running time. How-
ever, we can keep track of the order in which jobs have been
assigned and the job manager, when necessary, simply so-
licits the partitioning of the longest lived job. This choice
can be motivated by two reasons. The oldest assigned job
is likely to be among the most complex ones. And this pro-
bability increases over time. Second, a long job execution
time may also depend on the heterogeneity of the proces-
sing nodes and their loads. With such a choice we provide

help to the node which is likely to be overloaded either by
the current mining task assignment or by other unrelated
processes.

This approach guarantees a good trade-off between job
granularity and load balancing independently from the sub-
task size distribution and our ability to estimate it, and it is
suitable for heterogeneous computing infrastructures.

However, when the number of nodes increases, the cen-
tralized job manager will obviously become the bottleneck
of the system. In this case the DLB framework has to be
extended with a distributed job management approach. In
our current implementation each worker receives and do-
nates jobs, but does not play any role in the job allocation
process. Either a hierarchical or a completely distributed
management of the job pool would provide the scalability
needed to run the application in a large scale environment.
Our preliminary experiments have been carried out on a
small cluster of workstations and we leave this extension
for future research.

4.3. Data partitioning

When data-locality cannot be guaranteed, we have to
partition the data among the processors. For instance, a very
large size of the dataset and a high number of processing
nodes do not make the entire database replication feasible.
We address this problem by taking into account the spe-
cific application domain. The number of active compounds
is typically much smaller than the number of the inactive
ones. Thus, we can still duplicate the focus dataset (ac-

5

tive molecules subset) in each node and partition only the
complement dataset (inactive molecules subset). The se-
cond distributed algorithm we present, combines the space
search partitioning with the complement dataset partition-
ing.

In a first phase, a search space partition algorithm is exe-
cuted on the focus dataset only. The molecules of the lo-
cal partition of the complement dataset are not used during
this first step. A list of candidate fragments is incrementally
built at the centralized manager node from the partial list re-
ported by the workers. When lists of candidates are merged,
duplicates are discarded. Then, in a second phase, the com-
plete list of candidate fragments is broadcasted to all wor-
kers. Each worker computes partial counts of the frequency
of the candidates in the local partition of the complement
dataset. It should be noticed that in this step several sub-
graph isomorphism tests are required to determine if a can-
didate fragment is a substructure of the inactive molecules.
The optimisation based on the embedding list to avoid this
test adopted by serial MoFa and by the previous distributed
approach cannot be applied. Finally, the partial counts are
collected and the list of candidates is filtered by testing the
maxSupp on the complement dataset.
Without access to the entire set of inactive molecules, the
task of filtering the discriminative fragments has to be per-
formed in a second phase after the entire search tree has
been explored using only the focus dataset.

The number of subgraph isomorphism tests which are
performed potentially makes the second phase very slow.
However, the number of tests is proportional to the number
of candidates (typically orders of magnitude less the dataset
cardinality) and the partition size, which depends on the
number of processors. As a consequence, this second ap-
proach based on both search space and data partitioning is
expected to exhibit good scalability characteristics and may
be suited for a large-scale computing environment. Further-
more, the different resource requirements between the first
phase and the second phase make this approach benefit from
a Grid computing infrastructure with dynamic management
of computing resources, while it is less suitable for parallel
architecture and traditional distributed systems (e.g., NoW).

5. Experimental results

The two distributed algorithms (denoted by P1 and P2)
have been tested for the analysis of a set of real molecular
compounds, a well-known, publicly available dataset from
the National Cancer Institute, the DTP AIDS Antiviral
Screen dataset [1]. This screen utilized a soluble formazan
assay to measure protection of human CEM cells from HIV-
1 infection [17]. Compounds able to provide at least 50%
protection to the CEM cells were retested. Compounds
that provided at least 50% protection on retest were listed

as moderately active (CM). Compounds that reproducibly
provided 100% protection were listed as confirmed active
(CA). Compounds not meeting these criteria were listed as
confirmed inactive (CI). We used 37169 total compounds,
of which 325 belong to class CA, 875 are of class CM and
the remaining 35969 are of class CI. In order to carry out
tests on different sizes of focus and complement datasets
we combined these compounds as follows. We joined
the CA set with a different number of CM compounds
(0, 325, 650, 975) to form four focus datasets of size
f1 = 325, f2 = 650, f3 = 975, f4 = 1200. We used the
CI compounds to form four complement datasets of size
c1 = 9000, c2 = 18000, c3 = 27000, and c4 = 35969.

Experimental tests have been carried out in a local clus-
ter of ten computing nodes1; the software has been de-
veloped in Java. The communication among processes
has been implemented using an MPI-Java wrapper (mpi-
Java v1.2.5 [5]) to access a native MPI library (MPICH
v1.2.5.2). The Globus toolkit v2.4.3 has been adopted to
provide a Grid middleware infrastructure. In spite of the
small-scale single-domain computing environment we ex-
plicitly wanted to adopt a Grid infrastructure to demonstrate
the feasibility of a Grid approach to the problem and its ef-
fectiveness.
In the next sections we present a performance analysis of
the serial algorithm [4] and the performance evaluation of
the two distributed approaches proposed in this work.

5.1. Serial algorithm performance

This section presents an experimental analysis of the se-
quential algorithm to demonstrate the potential benefits of
the distributed approach. Two sets of tests have been carried
out and the results are shown, respectively, in figures 3 and
4. In these tests we fixed the maximum support in the in-
active compounds at 1% and changed the minimum support
in the active compounds in the range 5 − 20%.

Figure 3 shows how running time varies for different
values of the minimum support in the active compounds.
When a lower value is chosen, the algorithm has to explore
further and deeper branches of the search tree and bigger
fragments. This test shows the exponential growth of the
running time when both the minimum support and the
number of active molecules (the different curves) decrease.
The number of active compounds is relatively small
compared to the total number of molecules in the dataset.
Their number does not have a significant influence on the
overall size of the dataset. Rather, for a fixed percentage
value of the minimum support, the minimum absolute

1Nine nodes are equipped with a cpu Intel Xeon 2.40GHz and 3GB
RAM. One node is equipped with a cpu Intel Pentium M 1.7GHz and 1GB
RAM. All run Linux 2.4.21 and Java SE 1.4.2.

6

number of active compounds, which defines the frequent
fragments, decreases. As a consequence, further and deeper
branches of the search tree have to be explored. The Serial
algorithm could not complete the test with f1=325 and
minSupp = 5% due to an OutOfMemory error. DFS’s
memory requirements are proportional to the maximum
depth of the search tree. In this case the combination of a
small value of the parameter minSupp, a small number
of compounds in the focus dataset, and a high number of
compounds in the complement dataset caused the algorithm
to reach the memory limit of a single processing node.
Hence, the point (5, 2010) in the chart of figure 3 is only a
lower bound for the running time of the serial algorithm.

 0

 500

 1000

 1500

 2000

 4 6 8 10 12 14 16 18 20

tim
e

[s
ec

]

support [%]

OutOfMemoryError f1: 325
f2: 650
f3: 975

f4: 1200

Figure 3. Support influence on running times
for different number of active (CA and CM)
compounds (c = 35969)

Figure 4 shows the relation between the number of inac-
tive compounds, hence approximately the dataset size, the
minimum support and the running time. In this case the
equal distance among the different curves indicates a linear
relation between running time and dataset size for a given
minimum support.

Several techniques can be adopted to improve the perfor-
mance of the algorithm. One, which is worth mentioning,
is the adoption of knowledge from the specific application
domain. Significant reduction of the search space, for in-
stance, can be obtained by considering aromatic rings of
carbon atoms as a single macro-node in the graph represen-
tation of the molecules. For simplicity, in this work we do
not consider this or other optimisation techniques.

Furthermore, the analysis of the sequential algorithm
also pointed out the irregular nature of the search tree. An
irregular problem is characterized by a highly dynamic or
unpredictable domain. In this application the complexity
and the exploration time of the search tree, and even of a
single search tree node cannot be estimated. The data mi-

 0

 100

 200

 300

 400

 500

 4 6 8 10 12 14 16 18 20

tim
e

[s
ec

]

support [%]

c1: 9000
c2: 18000
c3: 27000
c4: 35969

Figure 4. Support influence on running times
for different number of inactive (CI) com-
pounds (f = 1200)

ning nature of the problem makes the time required to visit
a node unpredictable. In our tests a single node exploration
can take from few milliseconds to several seconds. More-
over, depth and fan of the search tree is also unpredictable.

5.2. Distributed algorithms evaluation

Of course, the first benefit we expect from distributing
a computational load in several nodes is a decrease in the
running time. This is even more important in a mining
application like the discriminative fragment discovery. Very
often the user does not know in advance what to expect
from the mining activity on a dataset. Moreover, the choice
of proper values for the application parameters may require
several trials. Short response times in an interactive session
are extremely important. Secondly, more and more often
the amount of available data overcomes the computing
throughput of a single processing node. In this case the
search can only be accomplished on a small subset of the
data, thus reducing the quality of the results. Furthermore,
in order to adhere to the computational constraints the user
has to limit the exploration of the range of parameters (e.g.
minSupp).
Figures 5 and 6 show the running times of the serial
algorithm, of the two distributed algorithms, namely P1
and P2, and of the first phase of P2 (P2-1) when the focus
and complement dataset sizes are varied. In the tests of
Figures 5 we adopted all available inactive compounds
(c = 35696). In the tests of Figures 6 we adopted 1200
active compounds. In both cases we chose minSupp = 5%
and maxSupp = 1%, and all available computing nodes
are used to run the distributed algorithms. P2-1 running
time measures correspond to the time required to explore
the entire search tree and to produce a list of candidates

7

to be filtered in the second phase. From these two charts
it becomes evident that P1 outperforms P2. The second
phase, which processes the local partition of the comple-
ment dataset, dominates the running time of P2, while
the first phase (P2-1) runtime behaviour is equivalent to
P1’s runtime - just scaled down by the reduced number of
compounds.

Finally, in figure 7 we show the speedup of the algo-
rithms. In absolute value the algorithm P1 exhibits bet-
ter speedup than P2. Nevertheless, in spite of the limited
number of processors used for our test, P1’s speedup al-
ready shows a sub-linear growth. P2’s speedup improves
with a higher number of processors and may provide bet-
ter scalability properties than P1 for large-scale systems.
Although these results are obviously preliminary they are
highly promising. Further investigation is required to better
evaluate the performance of the distributed approaches in a
large-scale computational environment.

 0

 500

 1000

 1500

 2000

 300 400 500 600 700 800 900 1000 1100 1200

tim
e

[s
ec

]

focus [num. of molecules]

P1
P2

P2-1
Serial

Figure 5. Running time comparison for a dif-
ferent number of active compounds

6. Conclusions

Grid computing infrastructures are foreseen to provide
an unprecedented opportunity for very demanding applica-
tions in terms of computing and storage requirements. High
performance distributed computing is becoming an essen-
tial component in data mining and data exploration. In this
paper we presented the first distributed formulation for the
frequent subgraph mining problem applied to the task of
discriminative molecular fragment discovery. Two algo-
rithms have been designed following a partitioning crite-
rion of the search and data space. Very low communica-
tion and synchronization for both algorithms and potentially
very high scalability for the second make these data mining
algorithms good candidates for Grid computing consumers.

 0

 100

 200

 300

 400

 500

 600

 5000 10000 15000 20000 25000 30000 35000 40000

tim
e

[s
ec

]

complement [num. of molecules]

P1
P2

P2-1
Serial

Figure 6. Running time comparison for a dif-
ferent number of inactive compounds

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 3 4 5 6 7 8 9 10 11

sp
ee

du
p

num. of proc.

P1
P2

Figure 7. Speedup (f=650 with minSupp=5%,
c=35696 with maxSupp=1%)

Several issues have been discussed for an effective design
of a large-scale distributed FSM algorithm. Tests on a set
of real compounds in a small-scale computing environment
provided encouraging preliminary results.

7. Acknowledgements

The research has been made possible by support from
the Deutscher Akademischer Austausch Dienst (DAAD)
and by a joint support from the Deutsche Forschungsge-
meinschaft (DFG) and Italian National Research Council
(CNR). We also thank the Department of Information and
Computer Science of the University of Konstanz for the use
of their machines.

8

References

[1] http://dtp.nci.nih.gov/docs/aids/aids data.html.
[2] R. Agrawal, T. Imielienski, and A. Swami. Mining associ-

ation rules between sets of items in large databases Proc. of
Conf. on Management of Data. pages 207–216.

[3] R. Agrawal and J. Shafer. Parallel mining of association
rules. IEEE Trans. Knowledge and Data Eng., 8(6):962969,
Dec. 1996.

[4] C. Borgelt and M. R. Berthold. Mining molecular fragments:
Finding relevant substructures of molecules. IEEE Interna-
tional Conference on Data Mining (ICDM 2002, Maebashi,
Japan). pages 51–58, December 09-12, 2002.

[5] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim. mpijava 1.2:
Api specification.

[6] S. Chakrabarti, A. Ranade, and K. Yelick. Randomized load-
balancing for tree-structured computation, In Scalable High
Performance Computing Conference, Knoxville, TN. 1994.

[7] Y. Chung, J.-W. Park, and S.-H. Yoon. An asynchro-
nous algorithm for balancing unpredictable workload on
distributed-memory machines. ETRI Journal, 20(4):346–
360, Dec. 1998.

[8] M. Desphande, M. Kuramochi, and G. Karypis. Automated
approaches for classifying structures Proc. of Workshop on
Data Mining in Bioinformatics (BioKDD). pages 11–18,
2002.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. International
J. Supercomputer Applications.

[10] Globus Project Team. The Globus Project,
http://www.globus.org.

[11] A. Grimshaw and W. Wulf. The legion vision of a worldwide
virtual computer. In Communications of the ACM, 40(1),
January 1997.

[12] E.-H. Han, G. Karypis, and V. Kumar. Scalable par-
allel data mining for association rules. IEEE Transac-
tions on Knowledge and Data Engineering, 12(3):337–352,
May/June 2000.

[13] I. Foster and C. Kesselman and J. Nick and S. Tuecke. The
physiology of the grid: An open grid services architecture
for distributed systems integration Open Grid Service In-
frastructure WG, Global Grid Forum. June 22, 2002.

[14] R. Karp and Y. Zhang. A randomized parallel branch-and-
bound procedure, In Proceedings of the 20 Annual ACM
Symp. on Theory of Computing. 1988.

[15] S. Kramer, L. de Raedt, and C. Helma. Molecular feature
mining in hiv data Proc. of 7th Int. Conf. on Knowledge Dis-
covery and Data Mining, (KDD-2001, San Francisco, CA).
pages 136–143, 2001.

[16] T. Washio and H. Motoda. State of the art of graph-
based data mining. ACM SIGKDD Explorations Newsletter,
5(1):59–68, July 2003.

[17] O. Weislow, R. Kiser, D. Fine, J. Bader, R. Shoemaker, and
M. Boyd. New soluble formazan assay for hiv-1 cytopathic
effects: Application to high flux screening of synthetic and
natural products for aids antiviral activity. Journal of the
National Cancer Institute, University Press, Oxford, United
Kingdom.

[18] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining Proceedings of the IEEE International Conference
on Data Mining ICDM, Maebashi City, Japan. 2002.

[19] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New
algorithms for fast discovery of association rules Proc. of
3rd Int. Conf. on Knowledge Discovery and Data Mining
(KDD’97). pages 283–296, 1997.

[20] M. J. Zaki. Parallel and distributed association mining: A
survey. IEEE Concurrency, 7(4):14–25, 1999.

9

