
The 17th IASTED Int. Conf. on Parallel and Distributed Computing and Systems (PDCS 2005), Nov. 14-16, 2005, Phoenix, AZ, USA

EFFICIENT MINING OF DISCRIMINATIVE MOLECULAR FRAGMENTS

Giuseppe Di Fatta
University of Konstanz, Germany

and ICAR-CNR,
Consiglio Nazionale delle Ricerche, Italy

difatta@inf.uni-konstanz.de

Michael R. Berthold
University of Konstanz,

Dept. of Computer and Information Science
78457 Konstanz, Germany

Michael.Berthold@uni-konstanz.de

ABSTRACT
Frequent pattern discovery in structured data is receiving
an increasing attention in many application areas of scien-
ces. However, the computational complexity and the large
amount of data to be explored often make the sequential al-
gorithms unsuitable. In this context high performance dis-
tributed computing becomes a very interesting and promis-
ing approach. In this paper we present a parallel formula-
tion of the frequent subgraph mining problem to discover
interesting patterns in molecular compounds. The appli-
cation is characterized by a highly irregular tree-structured
computation. No estimation is available for task workloads,
which show a power-law distribution in a wide range. The
proposed approach allows dynamic resource aggregation
and provides fault and latency tolerance. These features
make the distributed application suitable for multi-domain
heterogeneous environments, such as computational Grids.
The distributed application has been evaluated on the well-
known National Cancer Institute’s HIV-screening dataset.

KEY WORDS
Distributed computing, frequent subgraph mining, dy-
namic load balancing, biochemical databases.

1 Introduction

Frequent pattern discovery in structured data is receiving
an increasing attention in several areas of the science. In
particular, in molecular biology it is often desirable to find
common properties in large numbers of drug candidates.
A crucial step in the drug discovery process is the so-
called High Throughput Screening and the subsequent ana-
lysis of the generated data. A promising approach focuses
on the analysis of the molecular structure and the extrac-
tion of relevant molecular fragments that may be correlated
with activity. Such fragments can be used to directly iden-
tify groups of promising molecules (clustering) because of
their representation that is immediately understandable to
chemists and biologists. They can also be used to predict
activity in other compounds (classification) [1] and to guide
the synthesis of new ones.
The discovery of relevant molecular fragments can be for-
mulated as a frequent subgraph mining (FSM) problem [2]
in analogy to the association rule mining (ARM) problem

[3, 4]. While in ARM the main structure of the data is a list
of items (itemset) and the basic operation is the subset test,
FSM relies on graph and subgraph isomorphism.
Sequential algorithms are limited by single processor com-
puting resources and are often unsuitable for extremely
large datasets and an unlimited size of the fragments that
can be discovered.
In this paper, we present a distributed application of the fre-
quent subgraph mining problem for molecular compounds.
We define the relevant molecular fragments in terms of
frequent subgraphs and discuss the efficiency of the mi-
ning task. The distributed algorithm is based on a search
space partitioning strategy with an efficient structural prun-
ing technique. The analysis of the search space pointed
out the highly irregular computation load. Several dynamic
load balancing (DLB) algorithms have been proposed in
the last years to allow an efficient distribution of the com-
putation load for irregular problems. Nevertheless, some of
their assumptions do not hold in this particular application.
We adopt a novel DLB technique, a scheduler-based quasi-
random polling policy, within a message-passing commu-
nication framework.
The distributed algorithm has been applied to the analysis
of real molecular compounds, the National Cancer Insti-
tute’s HIV-screening dataset.

The rest of the paper is structured as follows. In the
next section we introduce the molecular fragment mining
problem and present alternative definitions of discrimina-
tive molecular fragments that influence the efficiency of
the overall mining process. We also discuss the irregular
computation that characterizes the sequential algorithm. In
section 3, we present a parallel computing approach for
molecular fragment mining and the adopted DLB policy.
Section 4 describes the experiments we conducted to eval-
uate the performance of the parallel approach. Finally, we
provide conclusive remarks.

2 Mining Molecular Fragments

The problem of selecting relevant molecular fragments in
a set of molecules can be formulated in terms of frequent
subgraph mining in a set of graphs. Molecules are repre-
sented by attributed graphs, in which each vertex represents
an atom and each edge a bond between atoms. Each ver-
tex carries attributes that indicate the atom type (i.e., the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/9464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

chemical element), a possible charge, and whether it is part
of an aromatic ring. Each edge carries an attribute that in-
dicates the bond type (single, double, triple, or aromatic).
Frequent molecular fragments are subgraphs that have a
certain minimum support in a given set of graphs, i.e., are
part of at least a certain percentage of the molecules.
Most of the existing methods to find frequent patterns at-
tempt to implicitly organize the search space in a lattice,
which models subgraph relationships. A number of ap-
proaches to find frequent molecular fragments have re-
cently been published [5, 6, 7, 8] but they are all limited
by the complexity of the underlying problem.
Finding frequent subgraphs in a set of graphs involves
graph and subgraph isomorphism testing, which are com-
putationally expensive. The subgraph isomorphism test is
known to be an NP-complete problem [9]. Furthermore,
there exists no known polynomial algorithm for isomor-
phism testing of general graphs, although the problem has
not been shown to be NP-complete. In [10] the problem
has been assigned to a special graph-isomorphism com-
plete complexity class, which falls between the P and NP-
complete classes. However, it is known that it can be
solved in polynomial time for many restricted classes of
graphs, such as bounded-degree graphs [11]. Molecular
compounds fall in the latter case. Nevertheless, the com-
binatorial nature of the problem poses a great challenge.
The set of all frequent fragments is enormous even for rela-
tively small datasets: a single molecule of average size can
already contain in the order of hundreds of thousands of
different fragments.

The parallel approach presented in this paper is based
on the sequential algorithm (MoFa) described in [7]. The
algorithm visit the fragment lattice, i.e. the space of all
possible subgraphs that are present in the molecular com-
pounds, in an efficient search tree. The algorithm performs
an exhaustive depth-first search and prunes the DFS tree
according to three criteria. The support-based pruning ex-
ploits the anti-monotone property of fragment support. The
size-based pruning exploits the anti-monotone property of
fragment size. And, finally, a partial structural pruning is
based on a local order of atoms and bonds, which is able
to restrain duplicate generation. For further details on the
algorithm we refer to [7].

2.1 Discriminative fragments

We assume that the molecular compounds in the dataset
can be classified in two groups. We refer to the two classes
of molecules as the focus set (active molecules) and its
complement (inactive molecules). For example, during the
High Throughput analysis, compounds are tested for a cer-
tain active behaviour and a score associated to their activity
level is determined. In this case, a threshold (thres) on the
activity value allows the classification of the molecules in
the two groups.
Discriminative molecular fragments are contrast substruc-
tures that are frequent in a predefined subset of molecules

Figure 1. Discriminative molecular fragment search tree

(focus) and infrequent in the complement of this subset. In
this case, two parameters are required: a minimum support
(minSupp) for the focus subset and a maximum support
(maxSupp) for the complement. An example of a search
tree is depicted in figure 1, which also shows the region of
the discriminative fragments.
These topological fragments carry important information
and may be representative of those components in the com-
pounds that are responsible for a positive behavior. Such
discriminate fragments can be used to predict activity in
other compounds and to guide the synthesis of new ones.
For example, they can be adopted as features in a multi-
dimensional space in molecular compounds classification
systems [1].
However, the high number of frequent fragments that can
be found in a large dataset suggests the adoption of subsets
of the frequent subgraphs for a more efficient computation.
Closed frequent subgraphs (CFS) are known to provide the
same topological information on the search space as the
frequent ones. A closed frequent subgraph is a frequent
subgraph whose support is higher than the support of all its
proper supergraphs. Given the CFS set, it is possible, for
example, to generate all frequent subgraphs without any
further access to the dataset. Moreover, the support of all
frequent subgraphs is implicitly defined by the closed sub-
graphs. For this reason we can adopt the CFS in more effi-
cient definitions of discriminative molecular fragments.

Given a datasetD and a frequency threshold
minSupp, the sets of frequent and closed frequent sub-
graphs are defined, respectively, as

FSD = {s | supp(s,D)≥ minSupp} and

CFSD = {s | supp(s,D)≥ minSupp and� x ∈ FSD, x ⊃
s and supp(x,D) = supp(s,D)},

where s is a graph, supp(s,D) is the number of graphs
in D, which are supergraphs of s, i.e. the support of s in D.
In our context, we have to extend the concept of the clo-
sure to the duality of active and inactive compounds. The
following different definitions can be adopted for discrimi-
native fragments (DF).

Definition 1 (Constrained FS) DFall is the set of fre-
quent subgraphs in the focus dataset constrained to infre-
quency in the complement dataset, according to:

DFall = {s ∈ FSF | supp(s,C) ≤ maxSupp}.

Definition 2 (Constrained Focus-closed FS) DFF is the
set of closed frequent subgraphs in the focus dataset con-
strained to infrequency in the complement dataset, accord-
ing to:

DFF = {s ∈ CFSF | supp(s,C) ≤ maxSupp}.

Definition 3 (Constrained Closed FS) DFFC is the set
of frequent subgraphs in the focus dataset constrained to
infrequency in the complement dataset, which are closed
w.r.t. both sets of graphs, according to:

DFFC = {s ∈ FSF | supp(s,C) ≤ maxSupp
and � x ∈ FSF , x ⊃ s, supp(x,F) = supp(s,F) and

supp(x,C) = supp(s,C)}.

The first definition considers the subgraphs that are
frequent in the focus dataset and are constrained to a
maximum support in the complement dataset. In the other
two definitions, the constrained frequent subgraphs are
restricted by the closure, respectively, in only the focus
dataset and in both datasets.
The closed frequent substructures can lead to a significant
improvement of the efficiency of the mining process. For
example, only for reporting purposes if the search algo-
rithm does not guarantee the uniqueness of the discovered
fragments, the number of graph isomorphism tests, which
need to be performed, is in the order ofO(n2), where
n is the number of frequent subgraphs. Moreover, the
frequent fragments might also overwhelm the memory of
a single computing node. In a distributed computational
environment, where partial results of remote processes
have to be collected, closed frequent fragments also lead to
another significant advantage, i.e. a lower communication
overhead.
Figure 2 provides an example of the number of frequent
and discriminative fragments for the NCI HIV dataset (cf.
section 4) when the given definitions are adopted. It is
evident how fewer closed fragments can carry equivalent
information to all frequent ones. For small values of the
support threshold, their ratio can achieve several orders
of magnitude. Moreover, in extreme cases we may not be
able to keep in memory all the frequent fragments because
of the limitations of a single processor. It should be noticed
that the alternative definitions do not reduce the number of
nodes in the search tree, but only the number of stored and
reported molecular fragments.
In general, definition 3 is preferred, because it already
provides a significant reduction of the cardinality of the
reported-fragment set, while it still maintains interesting
information about the support in the complement dataset.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30 35 40

nu
m

. o
f f

ra
gm

en
ts

minSupp (%)

FSF
DFall
DFFC

DFF

Figure 2. Number of molecular fragments

2.2 Irregular search space

The analysis of the sequential algorithm points out the ir-
regular nature of the search tree. An irregular problem is
characterized by a highly dynamic and unpredictable do-
main. In this application, the time complexity to visit the
search tree, and even to explore a single search tree node
cannot be estimated. The data mining nature of the pro-
blem makes the time required to visit a node unpredictable.
The pruning techniques, which this kind of search algo-
rithms heavily relies on, make the estimation of the tree
exploration time very difficult. Depth and fan of the search
tree are also unpredictable. In order to provide evidence
of the above considerations, we collected statistics of the
running time required by the sequential algorithm to visit
the subtree rooted at each node of the entire search tree
(minSupp = 10% andmaxSupp = 1%). Figure 3 shows
that the subtree visiting time follows a power-law distri-
bution. If we consider each subtree as a potential subtask
for a distributed computational environment, there is a very
large number of very small subtasks and a small number of
large subtasks.

Moreover, no assumption can be made on the lower
bound of subtask workloads. In general, a single node
exploration can take from few milliseconds to several
minutes. Thus, in the design of a parallel approach we can-
not assume that subtask transmission time is less than its
computation cost.

Static and most dynamic load balancing policies are
unsuitable for this application. We have to adopt a strategy
for task partitioning and distribution that is able to reduce
the generation of trivial tasks, while can still balance the
load among the available resources.

3 Parallel discriminative fragment mining

In recent years, several parallel and distributed algorithms
have been proposed for the association rule mining pro-

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

nu
m

. o
f s

ub
tr

ee
s

visiting time [msec]

Figure 3. Distribution of the subtree visiting time

blem (D-ARM) [12]. All these algorithms assume a static,
homogeneous and dedicated computation environment and
do not provide dynamic load balancing.

However, currently very few parallel and distributed
FSM algorithms have been proposed in the literature
[13][14][15]. Although parallel search algorithms have
been studied for a long time, distributed data mining appli-
cations, like FSM, are still non-trivial. The complexity of
the problem and the large amount of data to be explored
make parallel formulations of these methods extremely
challenging, especially when the target HPC architecture
is a distributed heterogeneous system.
The approach in [13] achieved a relatively good perfor-
mance in a small-scale computational environment, but
its scalability and efficiency are limited by two main
factors. First, the approach is based on a master-slave
communication model, which clearly cannot scale well
to a large number of computing nodes. Secondly, the
communication overhead due to the large number of
frequent fragments limits the efficiency of the overall
process. In this work, we overcome these limitations by
adopting a better definition of discriminative fragments
and by providing a more efficient and scalable DLB policy.

In order to adopt a distributed approach in a large-
scale computing environment, communication latency and
node failures have to be tolerated. For this reason we
have adopted a partitioning strategy and discarded solu-
tions based on a collaborative approach among processes,
such as distribution techniques similar to ones proposed in
[16, 17], which are more suited for dedicated HPC systems.

The distributed approach we propose is based on three
main aspects:

• a search space partitioning strategy,

• a centralized task queue with dynamic load balancing,

• and a message-passing communication framework.

We adopted a receiver-initiated DLB approach based
on two components, a quasi-random polling for the donor
selection and a work splitting technique for the subtask ge-
neration. Both components contribute to the overall DLB
efficiency and to its suitability to heterogeneous computing
resources.
In the next sections we discuss some details of the distrib-
uted application related to the search space partitioning and
to the load balancing policy.

3.1 Search space partitioning

Partitioning a Depth First Search (DFS) tree, i.e. paral-
lel backtracking [18], has been widely and successfully
adopted in many applications. In general, it is quite
straightforward to partition the search tree to generate new
independent jobs, which can be assigned to idle processors.
In this case, no synchronization is required among remote
jobs.

The job assignment must contain all the information
needed to continue the search from exactly the same point
in the search space. In our case, this is essential in order to
exploit the efficient search strategy provided by the sequen-
tial algorithm and based on advanced pruning techniques.
Thus, a job description includes the search node state to
rebuild the same local order necessary to prune the search
tree as in the sequential algorithm (cf. structural pruning in
[7]).

Each worker maintains only a local and partial list
of substructures found during the execution of subtasks.
Therefore, at the end of the search process we perform a
reduction operation. Workers are organized in a commu-
nication tree and the number of communication steps re-
quired is in the order ofO (log N), where N is the num-
ber of processes. This is more efficient than the star topol-
ogy adopted in the master-slave approach of [13], which re-
quiresO (N) sequential communication steps. During the
reduction of the frequent fragments, partial local lists are
merged and duplicates are discarded. In case only closed
fragments are required, non-closed ones could be filtered
out at the end of the reduction process. However, the de-
termination and selection of the closed fragments include
expensive subgraph isomorphism tests and may represent a
non-trivial computational cost for a single processor. Fur-
thermore, as shown in section 2.1, the number of all fre-
quent fragments may become very large and the communi-
cation cost would be too expensive. Therefore, the selec-
tion of the closed fragments has been distributed as well.
This is performed during the reduction operation in paral-
lel by several concurrent processes and not only by a single
master node.
Thus, the reduction operation based on a logical commu-
nication tree has the advantage of reducing the number
of communication steps and distributing the computational
load associated to the costly graph and subgraph isomor-
phism tests for the closed fragment selection.

3.2 Dynamic load balancing

Many DLB algorithms for irregular problems have been
proposed in the literature and their properties have been
studied [19]. Most of them rely on uniform [20] or bounded
[21] task times or the availability of workload estimates
[22]. However, none of these assumptions holds in our
case; we cannot guarantee that the computation cost of a
job is greater than the relative transmitting time, nor pro-
vide minimum or maximum bounds for the running time
of subtasks. It is quite challenging to efficiently parallelize
irregular problems with such an unpredictable workload.

In general, the DLB policy has to provide a mecha-
nism to fairly distribute the load among the processors us-
ing a small number of generated subtasks to reduce the
communication cost and the computational overhead. In
particular, the quality of both the selection of donors and
the generation of new subtasks is fundamental for an ef-
fective and efficient computational load distribution. These
two tasks are carried out, respectively, by the DLB algo-
rithm and the work splitting-mechanism discussed in the
next two subsections.

3.2.1 Scheduler-based quasi-random polling

The DLB approach we adopted is a receiver-initiated algo-
rithm based on a centralized job-pool and a quasi-random
polling. When a worker completes its task, it requests a
new subtask to a centralized scheduler, which maintains a
pool of available jobs and has to select job-donors among
the busy workers. In general, not all workers are equally
suitable as donor. Workers that are running a mining task
for a longer time, have to be preferred. This choice can
be motivated by two reasons. The longest running jobs are
likely to be among the most complex ones. And this proba-
bility increases over time. Secondly, a long job-execution
time may also depend on the heterogeneity of the proces-
sing nodes and their loads. With such a choice we provide
support to the nodes that are likely overloaded either by
their current mining task or by other unrelated processes.

The scheduler keeps an ordered list of potential
donors and performs a quasi-random polling over them to
get a new task. The probability of selecting a donor from
the list is not uniform, as it would be in a random polling. In
particular, we adopt a simple linearly decreasing probabi-
lity, where the donor list is ordered according to the starting
time of the latest job assignment. This way, long running
jobs have a high probability of being further partitioned,
while most recently assigned tasks do not.

In a centralized job-pool approach it is quite simple to
maintain global statistics of job executions. At the starting
and at the completion of a job execution, workers notify
the scheduler. The complete knowledge of job statistics in
the system allows the centralized scheduler to determine
suitable job donors. Approaches based on global statistics
are known to provide optimal load balancing performance,
while randomized techniques provide high scalability.

In order to reduce latency, each worker also keeps a
local pool of unprocessed jobs. This way at the completion
of a job, the request and reception of a new one can be
overlapped to the execution of a job from the local pool.
The scheduler keeps a list of assigned and not completed
jobs in order to support mechanisms for fault tolerance and
termination detection.

In some aspects, our approach is similar to the one
described in [19] as a “modified” scheduler-based load bal-
ancing. However, the approach described in [19] adopts
a round robin donor selection among the workers. In our
case, the use of a quasi-randomized technique is fundamen-
tal for the selection of the more suitable donors to avoid the
generation of a high number of trivial tasks. Polls are not
uniformly distributed among all workers, but they are still
spread over several donors.

3.2.2 Work splitting

In problems with uniform or bounded subtask times the ge-
neration of either too small or too big jobs is not an issue.
In our case, it is important to provide an adaptive mecha-
nism to find a good trade-off between load balancing and
job granularity.

In order to accomplish this aim we introduce three
rules at the donor to reduce the probability of generat-
ing trivial tasks and of inducing idle periods at the donor
processor itself. A worker can donate a search noden from
its local stack only if:

1. stackSize() ≥ minStackSize,

2. support(n) ≥ (1 + α) ∗ minSupp, and

3. lxa(n) ≤ β ∗ atomCount(n),

where α and β are tolerance factors,lxa() is the sub-
script of the last extended atom in the fragment (see below),
atomCount() provides the number of atoms in a fragment
andminStackSize specifies a minimum number of search
nodes in the stack to avoid starvation of the donor. The
values of these parameters are not critical and in our ex-
periments we adoptedminStackSize = 4, α = 0.1 and
β = 0.5.
These rules guarantee that the worker does not run out of
work while donating non-trivial parts of its search tree.
While rules 1 and 2 are quite straightforward, in order to
explain rule 3, we have to refer to the structural pruning
technique adopted in the sequential algorithm (cf. [7]). An
atom subscript indicates the order in which the atom has
been added to the fragment. All the atoms of the fragment
with a subscript less thanlxa cannot be further extended
according to the sequential algorithm. As a consequence,
subtrees rooted at a node with a highlxa value (close to
the number of atoms in the fragment) are expected to have
a low branching factor.

4 Performance evaluation

The distributed algorithm has been tested for the analysis
of a set of real molecular compounds - a well-known, pub-
licly available dataset from the National Cancer Institute,
the DTP AIDS Antiviral Screen dataset [23]. This screen
utilized a soluble formazan assay to measure protection of
human CEM cells from HIV-1 infection. Compounds able
to provide at least 50% protection to the CEM cells were
retested. Compounds that provided at least 50% protec-
tion on retest were listed as moderately active (CM). Com-
pounds that reproducibly provided 100% protection were
listed as confirmed active (CA). Compounds not meeting
these criteria were listed as confirmed inactive (CI). We
used a total of 37169 total compounds, of which 325 belong
to class CA, 875 are of class CM and the remaining 35969
are of class CI. In order to carry out tests on different sizes
of the focus dataset we combined these compounds as fol-
lows. We joined the CA set with a different number of CM
compounds (0, 325, 650, 875) to form four focus datasets
of sizef1 = 325, f2 = 650, f3 = 975 andf4 = 1200.

Experimental tests have been carried out on a network
of eight workstations1; the software has been developed in
Java. The communication among processes has been im-
plemented using TCP socket API and XML data format.

In general, the mining task becomes more difficult
when the absolute value of the minimum support decreases.
In this case, a bigger and deeper part of the fragment lattice
would be explored. This can be achieved by decreasing
either the relative minimum support or the number of the
active molecules, i.e. the focus dataset. We decided to fix
minSupp = 6% and to vary the number of molecules in
the focus dataset in order to show the influence of the dif-
ferent definitions of section 2.1 on the running time. For
the different focus datasets that have been defined above
(f1, f2, f3, f4), this corresponds to an absolute minimum
support, respectively, of 20, 39, 59, and 72 molecules.
A comparison of running times of the serial and distrib-
uted (over 8 processors) algorithms is shown in figure 4
(thres = 0.5, minSupp = 6% andmaxSupp = 1%).
The serial algorithm (serialDFFC) and one parallel ver-
sion (parallelDFFC) search for the closed frequent frag-
ments according to definition 3. The other two parallel
versions search for all frequent fragments (parallelDFall)
and for the discriminative fragment of definition 2 (paral-
lel DFF). It is evident that mining the dataset for all fre-
quent fragments (DFall) can become quite an expensive
task. The running time of parallelDFall for f1 was above
3000 seconds. This is due to the combinatorial explosion
of the number of frequent fragments and, in this case, the
task may become prohibitive even for a parallel computa-
tional environment. It should be mentioned that, in this
case (DFall), the sequential algorithm cannot even com-
plete the mining task due to the single-system memory lim-
itations.

1The computing nodes are equipped with a CPU Intel Xeon 2.40GHz,
3GB RAM and run Linux 2.6.5-7.151 and Java SE1.4.2 06.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 300 400 500 600 700 800 900 1000 1100 1200

tim
e

[s
ec

]

focus [num. of molecules]

serial DFFC
parallel DFall
parallel DFFC

parallel DFF

Figure 4. Running time comparison

Mining the dataset for the closed fragments (DFF and
DFFC) is feasible for the serial algorithm and is signifi-
cantly sped up by the parallel execution.

5 Conclusions

In this paper we presented a parallel approach to the fre-
quent subgraph mining problem. The distributed algorithm
has been applied to the task of molecular fragment dis-
covery to study the effect of different discriminative frag-
ment definitions. Several issues have also been discussed
for an effective design of a large-scale distributed FSM al-
gorithm. The adopted approach is based on three compo-
nents, which are a partitioning criterion of the search space,
a dynamic load balancing policy and a message-passing
communication architecture. Very low communication
and synchronization requirements, and good scalability of
the quasi-randomized load balancing make this distributed
data mining application suitable for multi-domain, hetero-
geneous computational environments like Computational
Grids. Moreover, the proposed approach naturally toler-
ates node failures and communication latency and supports
dynamic resource aggregation. Experimental tests on real
molecular compounds in a distributed non-dedicated com-
puting environment confirmed its effectiveness in terms of
running time performance, low parallel overhead, load bal-
ancing, fault and latency tolerance.
Future research effort will focus on large-scale systems,
where the centralized scheduler could potentially become
a bottleneck. In this case, the DLB framework needs to be
improved with distributed job-pools.

Acknowledgments

This work was supported by the Italian National Research
Council (CNR) and the DFG Research Training Group GK-
1042 ”Explorative Analysis and Visualization of large In-
formation Spaces”. We also thank the Department of Com-

puter and Information Science of the University of Kon-
stanz for the use of their machines.

References

[1] M. Deshpande, M. Kuramochi, and G. Karypis, “Fre-
quent sub-structure-based approaches for classifying
chemical compounds,” inProceedings of IEEE In-
ternational Conference on Data Mining (ICDM’03),
Melbourne, Florida, USA, Nov. 19–22, 2003.

[2] T. Washio and H. Motoda, “State of the art of graph-
based data mining,”ACM SIGKDD Explorations
Newsletter, vol. 5, no. 1, pp. 59–68, July 2003.

[3] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining
association rules between sets of items in large data-
bases,” inProceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
Washington, D.C., May 26–28,.

[4] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li,
“New algorithms for fast discovery of association
rules,” in Proceedings of 3rd Int. Conf. on Knowl-
edge Discovery and Data Mining (KDD’97), 1997,
pp. 283–296.

[5] M. Deshpande, M. Kuramochi, and G. Karypis, “Au-
tomated approaches for classifying structures,” in
Proceedings of Workshop on Data Mining in Bioin-
formatics (BioKDD), 2002, pp. 11–18.

[6] X. Yan and J. Han, “gspan: Graph-based substructure
pattern mining,” inProceedings of the IEEE Interna-
tional Conference on Data Mining (ICDM’02), Mae-
bashi City, Japan, 2002.

[7] C. Borgelt and M. R. Berthold, “Mining molecular
fragments: Finding relevant substructures of mole-
cules,” in IEEE International Conference on Data
Mining (ICDM 2002), Maebashi, Japan, Dec. 9–12,
2002, pp. 51–58.

[8] S. Kramer, L. de Raedt, and C. Helma, “Molecular
feature mining in hiv data,” inProceedings of 7th
Int. Conf. on Knowledge Discovery and Data Mining,
(KDD’01), San Francisco, CA, 2001, pp. 136–143.

[9] M. R. Garey and D. S. Johnson,Computers and
intractability: a guide to the theory of NP-
completeness. W. H. Freeman, 1979.

[10] S. Skiena, Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica.
Addison-Wesley, 1990.

[11] E. M. Luks, “Isomorphism of graphs of bounded va-
lence can be tested in polynomial time,”Journal of
Computer and System Sciences, vol. 25, pp. 42–65,
Aug. 1982.

[12] M. J. Zaki, “Parallel and distributed association mi-
ning: A survey,”IEEE Concurrency, vol. 7, no. 4, pp.
14–25, 1999.

[13] G. Di Fatta and M. R. Berthold, “Distributed mining
of molecular fragments,” inIEEE DM-Grid Work-
shop of the Int. Conf. on Data Mining (ICDM 2004),
Brighton, UK, Nov. 1–4, 2004.

[14] C. Wang and S. Parthasarathy, “Parallel algorithms
for mining frequent structural motifs in scientific
data,” inProceedings of the 18th Annual International
Conference on Supercomputing (ICS’04), Saint Malo,
France, June 26 - July 01, 2004.

[15] F. Schreiber and H. Schwbbermeyer, “Towards motif
detection in networks: Frequency concepts and flexi-
ble search,” inProceedings of the International Work-
shop on Network Tools and Applications in Biology
(NETTAB04), Camerino, Italy, Sept. 5–7, 2004, pp.
91–102.

[16] R. Agrawal and J. Shafer, “Parallel mining of asso-
ciation rules,”IEEE Transactions on Knowledge and
Data Engineering, vol. 8, no. 6, pp. 962–969, Dec.
1996.

[17] E. Han, G. Karypis, and V. Kumar, “Scalable parallel
data mining for association rules,”IEEE Transactions
on Knowledge and Data Engineering, vol. 12, no. 3,
pp. 337–352, May/June 2000.

[18] R. Finkel and U. Manber, “Dib - a distributed im-
plementation of backtracking,”ACM Transactions on
Programming Languages and Systems, vol. 9 (2), pp.
235–256, Apr. 1987.

[19] V. Kumar, A. Grama, and V. N. Rao, “Scalable load
balancing techniques for parallel computer,”Journal
of Parallel and Distributed Computing, vol. 22, no. 1,
pp. 60–79, July 1994.

[20] R. Karp and Y. Zhang, “A randomized parallel
branch-and-bound procedure,” inProceedings of the
20 Annual ACM Symposium on Theory of Computing
(STOC 1988), 1988, pp. 290–300.

[21] S. Chakrabarti, A. Ranade, and K. Yelick, “Random-
ized load-balancing for tree-structured computation,”
in Proceedings of the Scalable High Performance
Computing Conference (SHPCC ’94), Knoxville, TN,
May 23–25, 1994, pp. 666–673.

[22] Y. Chung, J. Park, and S. Yoon, “An asynchro-
nous algorithm for balancing unpredictable work-
load on distributed-memory machines,”ETRI Jour-
nal, vol. 20, no. 4, pp. 346–360, Dec. 1998.

[23] National Cancer Institute. DTP AIDS an-
tiviral screen dataset. [Online]. Available:
http://dtp.nci.nih.gov/docs/aids/aids/data.html

