55 research outputs found
Sub-kiloparsec empirical relations and excitation conditions of HCN and HCO+ J=3-2 in nearby star-forming galaxies
We present new HCN and HCO+ (J = 3–2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of ∼290–440 pc and resolve the inner Rgal ≲ 0.6–1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO+, and CO and analyse the behaviour of a representative set of line ratios: HCN(3–2)/HCN(1–0), HCN(3–2)/HCO+(3–2), HCN(1–0)/CO(2–1), and HCN(3–2)/CO(2–1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO+ observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density (Σstar), the intensity-weighted CO(2–1) (⟨ICO⟩), and the star formation rate surface density (ΣSFR). We find no apparent correlation with ΣSFR, but positive correlations with the other two parameters, which are stronger in the case of ⟨ICO⟩. The HCN/CO–⟨ICO⟩ relations show ≲0.3 dex galaxy-to-galaxy offsets, with HCN(3–2)/CO(2–1)–⟨ICO⟩ being ∼2 times steeper than HCN(1–0)/CO(2–1). In contrast, the HCN(3–2)/HCN(1–0)–⟨ICO⟩ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g., density or temperature)
BASS. XXXIV. A Catalog of the Nuclear Millimeter-wave Continuum Emission Properties of AGNs Constrained on Scales ≤ 100-200 pc
We present a catalog of the millimeter-wave (mm-wave) continuum properties of 98 nearby (z < 0.05) active galactic nuclei (AGNs) selected from the 70 month Swift/BAT hard-X-ray catalog that have precisely determined X-ray spectral properties and subarcsecond-resolution Atacama Large Millimeter/submillimeter Array Band 6 (211-275 GHz) observations as of 2021 April. Due to the hard-X-ray (>10 keV) selection, the sample is nearly unbiased for obscured systems at least up to Compton-thick-level obscuration, and provides the largest number of AGNs with high-physical-resolution mm-wave data (less than or similar to 100-200 pc). Our catalog reports emission peak coordinates, spectral indices, and peak fluxes and luminosities at 1.3 mm (230 GHz). Additionally, high-resolution mm-wave images are provided. Using the images and creating radial surface brightness profiles of mm-wave emission, we identify emission extending from the central sources and isolated blob-like emission. Flags indicating the presence of these emission features are tabulated. Among 90 AGNs with significant detections of nuclear emission, 37 AGNs (approximate to 41%) appear to have both or one of extended or blob-like components. We, in particular, investigate AGNs that show well-resolved mm-wave components and find that these seem to have a variety of origins (i.e., a jet, radio lobes, a secondary AGN, stellar clusters, a narrow-line region, galaxy disk, active star formation regions, or AGN-driven outflows), and some components have currently unclear origins
PHANGS-JWST first results: stellar-feedback-driven excitation and dissociation of molecular gas in the Starburst Ring of NGC 1365?
We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C i] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas
PHANGS-JWST First Results: A Global and Moderately Resolved View of Mid-infrared and CO Line Emission from Galaxies at the Start of the JWST Era
We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1-0) and CO (2-1) intensity, I CO, and mid-IR intensity, I MIR, at 8, 12, 22, and 24 μm. The I CO versus I MIR relationship is reasonably described by a power law with slopes 0.7-1.2 and normalization I CO ∼ 1 K km s−1 at I MIR ∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1-0) and CO (2-1) allow us to infer that R 21 ∝ I MIR 0.2 , in good agreement with other work. The 8 μm and 12 μm bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24 μm, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M ⋆) and anticorrelates with star formation rate/M ⋆. At ∼1 kpc resolution, the first four PHANGS-JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities
The properties and kinematics of HCN emission across the closest starburst galaxy NGC 253 observed with ALMA
Context. Investigating molecular gas tracers, such as hydrogen cyanide (HCN), to probe higher densities than CO emission across nearby galaxies remains challenging. This is due to the large observing times required to detect HCN at a high sensitivity and spatial resolution. Although approximate kiloparsec scales of HCN maps are available for tens of galaxies, higher-resolution maps still need to be available. Aims. We aim to study the properties of molecular gas, the contrast in intensity between two tracers that probe different density regimes (the HCN(1'0)/CO(2'1) ratio), and their kinematics across NGC 253, one of the closest starburst galaxies. With its advanced capabilities, the Atacama Large Millimeter/submillimeter Array (ALMA) can map these features at a high resolution across a large field of view and uncover the nature of such dense gas in extragalactic systems. Methods. We present new ALMA Atacama Compact Array and Total Power (ACA+TP) observations of the HCN emission across NGC 253. The observations cover the inner 8.6 of the galaxy disk at a spatial resolution of 300 pc. Our study examines the distribution and kinematics of the HCN-traced gas and its relationship with the bulk molecular gas traced by CO(2'1). We analyze the integrated intensity and mean velocity of HCN and CO along each line of sight. We also used the SCOUSE software to perform spectral decomposition, which considers each velocity component separately. Results. We find that the denser molecular gas traced by HCN piles up in a ring-like structure at a radius of 2 kpc. The HCN emission is enhanced by two orders of magnitude in the central 2 kpc regions, beyond which its intensity decreases with increasing galactocentric distance. The number of components in the HCN spectra shows a robust environmental dependence, with multiple velocity features across the center and bar. The HCN spectra exhibit multiple velocity features across the center and bar, which shows a robust environmental dependence. We have identified an increase in the HCN/CO ratio in these regions, corresponding to a velocity component likely associated with a molecular outflow. We have also discovered that the ratio between the total infrared luminosity and dense gas mass, which is an indicator of the star formation efficiency of dense gas, is anticorrelated with the molecular gas surface density up to approximately 200 M' pc'2. However, beyond this point, the ratio starts to increase. Conclusions. We argue that using information about spectroscopic features of molecular emission is an important aspect of understanding molecular properties in galaxies
The ALMOND survey: Molecular cloud properties and gas density tracers across 25 nearby spiral galaxies with ALMA
We use new HCN(1-0) data from the ACA Large-sample Mapping Of Nearby galaxies in Dense gas (ALMOND) survey to trace the kpc-scale molecular gas density structure and CO(2-1) data from the Physics at High Angular resolution in Nearby GalaxieS-Atacama Large Millimeter/submillimeter Array (PHANGS-ALMA) to trace the bulk molecular gas across 25 nearby star-forming galaxies. At 2.1 kpc scale, we measure the density-sensitive HCN/CO line ratio and the star formation rate (SFR)/HCN ratio to trace the star formation efficiency in the denser molecular medium. At 150 pc scale, we measure structural and dynamical properties of the molecular gas via CO(2-1) line emission, which is linked to the lower resolution data using an intensity-weighted averaging method. We find positive correlations (negative) of HCN/CO (SFR/HCN) with the surface density, the velocity dispersion, and the internal turbulent pressure of the molecular gas. These observed correlations agree with expected trends from turbulent models of star formation, which consider a single free-fall time gravitational collapse. Our results show that the kpc-scale HCN/CO line ratio is a powerful tool to trace the 150 pc scale average density distribution of the molecular clouds. Lastly, we find systematic variations of the SFR/HCN ratio with cloud-scale molecular gas properties, which are incompatible with a universal star formation efficiency. Overall, these findings show that mean molecular gas density, molecular cloud properties, and star formation are closely linked in a coherent way, and observations of density-sensitive molecular gas tracers are a useful tool to analyse these variations, linking molecular gas physics to stellar output across galaxy discs
PHANGS-JWST First Results: Stellar-feedback-driven Excitation and Dissociation of Molecular Gas in the Starburst Ring of NGC 1365?
We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS-JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1-0, 2-1 and 4-3) and [C i] (1-0) mapping, which we use to trace CO excitation via R 42 = I CO(4−3)/I CO(2−1) and R 21 = I CO(2−1)/I CO(1−0) and dissociation via R CICO = I [CI](1−0)/I CO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R 42) and increased signatures of dissociation (higher R CICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R 42 and R CICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, R CICO exhibits ∼0.1 dex tighter correlations than R 42, suggesting C i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4-3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas
PHANGS-JWST First Results: A Global and Moderately Resolved View of Mid-infrared and CO Line Emission from Galaxies at the Start of the JWST Era
We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1-0) and CO (2-1) intensity, I CO, and mid-IR intensity, I MIR, at 8, 12, 22, and 24 μm. The I CO versus I MIR relationship is reasonably described by a power law with slopes 0.7-1.2 and normalization I CO ∼ 1 K km s−1 at I MIR ∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1-0) and CO (2-1) allow us to infer that R 21 ∝ I MIR 0.2 , in good agreement with other work. The 8 μm and 12 μm bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24 μm, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M ⋆) and anticorrelates with star formation rate/M ⋆. At ∼1 kpc resolution, the first four PHANGS-JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities
A validation of the questionnaire on teacher interaction in Italian secondary school students: Effect of positive relations on motivation and academic achievement
The Model for Interpersonal Teacher Behavior, mapping the various teachers\u2019 interpersonal behaviors, has been applied for research in many countries. In order to measure the students\u2019 perceptions regarding the interaction with their teachers, the Questionnaire on Teacher Interaction (QTI) has been developed. The QTI has been shown to be a valid and reliable instrument in all the different language versions in which it was adapted. Translated and validated in many countries, the QTI has not yet received a validation in Italy. The present study was conducted on a population of Italian secondary school students with the aim to examine the psychometric properties of the Italian translation of the QTI in its 64-item version. Results show that individual and class-mean reliabilities and the values related to the scales\u2019
ability to differentiate between classrooms are in line with those of the original research and of the other validation studies. Moreover, the circumplex nature of the octagonal model of the QTI is confirmed by the interscale correlations. Finally, results
show that the more positive are the QTI dimensions of affiliation and control, the more positive are students\u2019 academic achievement and learning motivation
- …
