6 research outputs found

    N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by 伪-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APPSw,Ind Mice

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: 伪-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer鈥檚 disease model. Interestingly, a very marked increase in NMDAR鈥揘CS1 complexes was identified in neurons and a marked increase of both NMDAR鈥揘CS1 and NMDAR鈥揅aM complexes was identified in microglia from the transgenic mice. The results show that 伪-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor鈥揷alcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups

    Expression of Melatonin and Dopamine D Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension

    Get PDF
    Background: Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D receptors (DRs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by DR and either MT (MTR) or MT (MTR) melatonin receptors. Heteromerization led to the blockade of DR-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. Conclusions: Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of DR-MTR and DR-MTR was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2

    Molecular mechanisms regulated by the transcriptional coactivator CRTC1 in synaptic plasticity

    No full text
    La remodelaci贸 sin脿ptica depenent d鈥檃ctivitat o plasticitat sin脿ptica 茅s considerada la base cel路lular de diferents processos fisiol貌gics cerebrals com l鈥檃prenentatge i la mem貌ria. Un proteoma equilibrat 茅s essencial per a una transmissi贸 sin脿ptica eficient i la seva desregulaci贸 茅s caracter铆stica de malalties neurodegeneratives com la malaltia d鈥橝lzheimer. El factor sinaptonuclear coactivador transcripcional regulat per CREB 1 (CRTC1) connecta l鈥檃ctivaci贸 de receptors glutamat猫rgics amb programes g猫nics dependents de CREB, contribuint aix铆 al desenvolupament, superviv猫ncia i plasticitat neuronal. No obstant aix貌, els mecanismes molecular dependents de CRTC1 que regulen el proteoma sin脿ptic en condicions fisiol貌giques i patol貌giques es desconeixen. Les hip貌tesis d鈥檃questa tesi doctoral s贸n: (1) que CRTC1 modula la plasticitat sin脿ptica localment en la sinapsi regulant el seu proteoma, i distalment en el nucli modulant l鈥檈xpressi贸 de gens de neuroplasticitat; i (2) que la desregulaci贸 de CRTC1 est脿 associada a canvis neuropatol貌gics en tauopaties. Els objectius d鈥檃questa tesi doctoral s贸n investigar els mecanismes moleculars sin脿ptics dependents de CRTC1 implicats en plasticitat sin脿ptica, i estudiar la relaci贸 de CRTC1 i presenilines (PS) en la pres猫ncia de tau patol貌gica en sinapsis. Els nostres resultats indiquen que CRTC1 茅s essencial per a la mem貌ria associativa a llarg termini i que modula la neurotransmissi贸 mediada pels receptors N-metil-D-aspartat (NMDARs; GluN). CRTC1 regula la composici贸, la fosforilaci贸 de la subunitat GluN1 dependent de la prote茂na quinasa C (PKC) i la localitzaci贸 sin脿ptica dels receptors NMDA. A m茅s, mitjan莽ant l鈥櫭簊 d鈥檜n mutant de CRTC1 constitutivament citos貌lic, que alberga la triple mutaci贸 S64/151/245A, he demostrat que la fosforilaci贸 i localitzaci贸 sin脿ptica de GluN1 茅s independent de l鈥檃ctivitat nuclear de CRTC1. Aix铆 mateix, CRTC1 contribueix al manteniment del proteoma neuronal promovent la localitzaci贸 dendr铆tica de mRNAs i la seva traducci贸 local a prote茂nes. Els an脿lisis bioqu铆mics de sinaptosomes purificats del model mur铆 knockout de PS1 (PS1 cKO);Tau mostren un increment de tau patol貌gica i disminuci贸 de CRTC1 en sinapsi. L鈥檈studi de l鈥檃utof脿gia en el model mur铆 PS1 cKO;Tau i en mostres humanes indica que PS1 regula negativament la inducci贸 de l鈥檃utof脿gia i mant茅 l鈥檈liminaci贸 dels autolisosomes, i que la seva p猫rdua probablement contribueix a l鈥檃cumulaci贸 i agregaci贸 de tau patol貌gica. En conclusi贸, els nostres resultats indiquen que el CRTC1 sin脿ptic modula localment la neurotransmissi贸 mediada pels receptors NMDA i que un augment en l鈥檃cumulaci贸 patol貌gica de tau a causa de la p猫rdua de funci贸 de PS1 condueix a la desregulaci贸 de CRTC1 i a la patologia sin脿ptica.La remodelaci贸n sin谩ptica dependiente de actividad o plasticidad sin谩ptica es considerada la base celular de diferentes procesos fisiol贸gicos cerebrales, incluidos el aprendizaje y la memoria. Un proteoma equilibrado es esencial para una transmisi贸n sin谩ptica eficiente y su desregulaci贸n es caracter铆stica de enfermedades neurodegenerativas como la enfermedad de Alzheimer (EA). El factor sinaptonuclear coactivador transcripcional regulado por CREB 1 (CRTC1) conecta la activaci贸n de receptores glutamat茅rgicos con programas g茅nicos dependientes de CREB, contribuyendo as铆 al desarrollo, la supervivencia y la plasticidad neuronal. Sin embargo, los mecanismos moleculares dependientes de CRTC1 que regulan el proteoma sin谩ptico en condiciones fisiol贸gicas y patol贸gicas se desconocen. Las hip贸tesis de esta tesis doctoral son: (1) que CRTC1 media la plasticidad sin谩ptica localmente en la sinapsis regulando su proteoma, y distalmente en el n煤cleo modulando la expresi贸n de genes de neuroplasticidad; y (2) que la desregulaci贸n de CRTC1 est谩 asociada a cambios neuropatol贸gicos en tauopat铆as. Los objetivos de esta tesis doctoral son investigar los mecanismos moleculares sin谩pticos dependientes de CRTC1 implicados en plasticidad sin谩ptica, y estudiar la relaci贸n de CRTC1 y presenilinas (PS) en la presencia de tau patol贸gica en sinapsis. Nuestros resultados indican que CRTC1 es esencial para la memoria asociativa a largo plazo y que modula la neurotransmisi贸n mediada por los receptores N-metil-D-aspartato (NMDARs; GluN). CRTC1 regula la composici贸n, la fosforilaci贸n de la subunidad GluN1 dependiente de la prote铆na quinasa C (PKC) y la localizaci贸n sin谩ptica de los receptores NMDA. Adem谩s, mediante el uso de un mutante de CRTC1 constitutivamente citos贸lico, que alberga la triple mutaci贸n S64/151/245A, he demostrado que la fosforilaci贸n y localizaci贸n sin谩ptica de GluN1 es independiente de la actividad nuclear de CRTC1. Asimismo, CRTC1 contribuye al mantenimiento del proteoma neuronal promoviendo la localizaci贸n dendr铆tica de mRNAs y su traducci贸n local a prote铆nas. Los an谩lisis bioqu铆micos de sinaptosomas purificados del modelo murino knockout de PS1 (PS1 cKO);Tau muestran un incremento de tau patol贸gica y disminuci贸n de CRTC1 en sinapsis. El estudio de la autofagia en el modelo murino PS1 cKO;Tau y en muestras humanas indica que PS1 regula negativamente la inducci贸n de la autofagia y mantiene la eliminaci贸n de los autolisosomas, y que su p茅rdida probablemente contribuya a la acumulaci贸n y agregaci贸n de tau patol贸gica. En conclusi贸n, nuestros resultados indican que el CRTC1 sin谩ptico modula localmente la neurotransmisi贸n mediada por los receptores NMDA y que un aumento en la acumulaci贸n patol贸gica de tau debido a la p茅rdida de funci贸n de PS1 conduce a la desregulaci贸n de CRTC1 y a la patolog铆a sin谩ptica.Activity-dependent remodeling of synapses or synaptic plasticity is considered the cellular basis of several brain physiological processes, including learning and memory. A balanced proteome is essential for efficient synaptic transmission and its deregulation is a hallmark of neurodegenerative diseases such as Alzheimer鈥檚 disease (AD). The synaptonuclear factor CREB-regulated transcription coactivator-1 (CRTC1) links glutamate receptor activation to CREB-dependent gene programs at the nucleus, contributing to neuronal development, survival, and plasticity. However, the CRTC1-dependent molecular mechanisms regulating synaptic proteome in physiological and pathological conditions remain poorly understood. The hypotheses of this doctoral thesis are: (1) that CRTC1 mediates synaptic plasticity locally at synapses by regulating its proteome, and distally at the nucleus by modulating the expression of neuroplasticity genes; and (2) that CRTC1 deregulation is associated with neuropathological changes in tauopathy dementias. The objectives of this doctoral thesis are to investigate the synaptic CRTC1-dependent molecular mechanisms involved in synaptic plasticity, and to study the link of CRTC1 and presenilin (PS) in pathological tau at synapses. Our results show that CRTC1 is essential for long-term associative memory and modulates N-methyl-D-aspartate receptors (NMDARs; GluN)-mediated neurotransmission. CRTC1 regulates NMDARs subunit composition, protein kinase C (PKC)-dependent GluN1 phosphorylation and synaptic localization. Remarkably, by using a constitutively cytosolic CRTC1 mutant harboring triple S64/151/245A mutation, I demonstrate that GluN1 phosphorylation and synaptic localization are independent of CRTC1 nuclear activity. In addition, CRTC1 contributes to maintain neuronal proteome by promoting mRNA transport and protein synthesis at dendritic compartments. Biochemical analyses of purified synaptosomes from PS1 conditional knockout (PS1 cKO);Tau mouse model reveal increased pathological tau and reduced CRTC1 at synapses. Analysis of autophagy in PS1 cKO;Tau mouse model and human samples show that PS1 negatively regulates autophagy induction and maintains autolysosomes clearance, and its loss likely contributes to accumulation and aggregation of pathological tau. In conclusion, our findings indicate that synaptic CRTC1 locally modulates NMDAR-mediated neurotransmission and that increased pathological tau accumulation due to PS1 loss of function leads to CRTC1 deregulation and synapse pathology.Universitat Aut貌noma de Barcelona. Programa de Doctorat en Neuroci猫ncie

    Molecular mechanisms regulated by the transcriptional coactivator CRTC1 in synaptic plasticity

    No full text
    La remodelaci贸 sin脿ptica depenent d'activitat o plasticitat sin脿ptica 茅s considerada la base cel路lular de diferents processos fisiol貌gics cerebrals com l'aprenentatge i la mem貌ria. Un proteoma equilibrat 茅s essencial per a una transmissi贸 sin脿ptica eficient i la seva desregulaci贸 茅s caracter铆stica de malalties neurodegeneratives com la malaltia d'Alzheimer. El factor sinaptonuclear coactivador transcripcional regulat per CREB 1 (CRTC1) connecta l'activaci贸 de receptors glutamat猫rgics amb programes g猫nics dependents de CREB, contribuint aix铆 al desenvolupament, superviv猫ncia i plasticitat neuronal. No obstant aix貌, els mecanismes molecular dependents de CRTC1 que regulen el proteoma sin脿ptic en condicions fisiol貌giques i patol貌giques es desconeixen. Les hip貌tesis d'aquesta tesi doctoral s贸n: (1) que CRTC1 modula la plasticitat sin脿ptica localment en la sinapsi regulant el seu proteoma, i distalment en el nucli modulant l'expressi贸 de gens de neuroplasticitat; i (2) que la desregulaci贸 de CRTC1 est脿 associada a canvis neuropatol貌gics en tauopaties. Els objectius d'aquesta tesi doctoral s贸n investigar els mecanismes moleculars sin脿ptics dependents de CRTC1 implicats en plasticitat sin脿ptica, i estudiar la relaci贸 de CRTC1 i presenilines (PS) en la pres猫ncia de tau patol貌gica en sinapsis. Els nostres resultats indiquen que CRTC1 茅s essencial per a la mem貌ria associativa a llarg termini i que modula la neurotransmissi贸 mediada pels receptors N-metil-D-aspartat (NMDARs; GluN). CRTC1 regula la composici贸, la fosforilaci贸 de la subunitat GluN1 dependent de la prote茂na quinasa C (PKC) i la localitzaci贸 sin脿ptica dels receptors NMDA. A m茅s, mitjan莽ant l'煤s d'un mutant de CRTC1 constitutivament citos貌lic, que alberga la triple mutaci贸 S64/151/245A, he demostrat que la fosforilaci贸 i localitzaci贸 sin脿ptica de GluN1 茅s independent de l'activitat nuclear de CRTC1. Aix铆 mateix, CRTC1 contribueix al manteniment del proteoma neuronal promovent la localitzaci贸 dendr铆tica de mRNAs i la seva traducci贸 local a prote茂nes. Els an脿lisis bioqu铆mics de sinaptosomes purificats del model mur铆 knockout de PS1 (PS1 cKO);Tau mostren un increment de tau patol貌gica i disminuci贸 de CRTC1 en sinapsi. L'estudi de l'autof脿gia en el model mur铆 PS1 cKO;Tau i en mostres humanes indica que PS1 regula negativament la inducci贸 de l'autof脿gia i mant茅 l'eliminaci贸 dels autolisosomes, i que la seva p猫rdua probablement contribueix a l'acumulaci贸 i agregaci贸 de tau patol貌gica. En conclusi贸, els nostres resultats indiquen que el CRTC1 sin脿ptic modula localment la neurotransmissi贸 mediada pels receptors NMDA i que un augment en l'acumulaci贸 patol貌gica de tau a causa de la p猫rdua de funci贸 de PS1 condueix a la desregulaci贸 de CRTC1 i a la patologia sin脿ptica.La remodelaci贸n sin谩ptica dependiente de actividad o plasticidad sin谩ptica es considerada la base celular de diferentes procesos fisiol贸gicos cerebrales, incluidos el aprendizaje y la memoria. Un proteoma equilibrado es esencial para una transmisi贸n sin谩ptica eficiente y su desregulaci贸n es caracter铆stica de enfermedades neurodegenerativas como la enfermedad de Alzheimer (EA). El factor sinaptonuclear coactivador transcripcional regulado por CREB 1 (CRTC1) conecta la activaci贸n de receptores glutamat茅rgicos con programas g茅nicos dependientes de CREB, contribuyendo as铆 al desarrollo, la supervivencia y la plasticidad neuronal. Sin embargo, los mecanismos moleculares dependientes de CRTC1 que regulan el proteoma sin谩ptico en condiciones fisiol贸gicas y patol贸gicas se desconocen. Las hip贸tesis de esta tesis doctoral son: (1) que CRTC1 media la plasticidad sin谩ptica localmente en la sinapsis regulando su proteoma, y distalmente en el n煤cleo modulando la expresi贸n de genes de neuroplasticidad; y (2) que la desregulaci贸n de CRTC1 est谩 asociada a cambios neuropatol贸gicos en tauopat铆as. Los objetivos de esta tesis doctoral son investigar los mecanismos moleculares sin谩pticos dependientes de CRTC1 implicados en plasticidad sin谩ptica, y estudiar la relaci贸n de CRTC1 y presenilinas (PS) en la presencia de tau patol贸gica en sinapsis. Nuestros resultados indican que CRTC1 es esencial para la memoria asociativa a largo plazo y que modula la neurotransmisi贸n mediada por los receptores N-metil-D-aspartato (NMDARs; GluN). CRTC1 regula la composici贸n, la fosforilaci贸n de la subunidad GluN1 dependiente de la prote铆na quinasa C (PKC) y la localizaci贸n sin谩ptica de los receptores NMDA. Adem谩s, mediante el uso de un mutante de CRTC1 constitutivamente citos贸lico, que alberga la triple mutaci贸n S64/151/245A, he demostrado que la fosforilaci贸n y localizaci贸n sin谩ptica de GluN1 es independiente de la actividad nuclear de CRTC1. Asimismo, CRTC1 contribuye al mantenimiento del proteoma neuronal promoviendo la localizaci贸n dendr铆tica de mRNAs y su traducci贸n local a prote铆nas. Los an谩lisis bioqu铆micos de sinaptosomas purificados del modelo murino knockout de PS1 (PS1 cKO);Tau muestran un incremento de tau patol贸gica y disminuci贸n de CRTC1 en sinapsis. El estudio de la autofagia en el modelo murino PS1 cKO;Tau y en muestras humanas indica que PS1 regula negativamente la inducci贸n de la autofagia y mantiene la eliminaci贸n de los autolisosomas, y que su p茅rdida probablemente contribuya a la acumulaci贸n y agregaci贸n de tau patol贸gica. En conclusi贸n, nuestros resultados indican que el CRTC1 sin谩ptico modula localmente la neurotransmisi贸n mediada por los receptores NMDA y que un aumento en la acumulaci贸n patol贸gica de tau debido a la p茅rdida de funci贸n de PS1 conduce a la desregulaci贸n de CRTC1 y a la patolog铆a sin谩ptica.Activity-dependent remodeling of synapses or synaptic plasticity is considered the cellular basis of several brain physiological processes, including learning and memory. A balanced proteome is essential for efficient synaptic transmission and its deregulation is a hallmark of neurodegenerative diseases such as Alzheimer's disease (AD). The synaptonuclear factor CREB-regulated transcription coactivator-1 (CRTC1) links glutamate receptor activation to CREB-dependent gene programs at the nucleus, contributing to neuronal development, survival, and plasticity. However, the CRTC1-dependent molecular mechanisms regulating synaptic proteome in physiological and pathological conditions remain poorly understood. The hypotheses of this doctoral thesis are: (1) that CRTC1 mediates synaptic plasticity locally at synapses by regulating its proteome, and distally at the nucleus by modulating the expression of neuroplasticity genes; and (2) that CRTC1 deregulation is associated with neuropathological changes in tauopathy dementias. The objectives of this doctoral thesis are to investigate the synaptic CRTC1-dependent molecular mechanisms involved in synaptic plasticity, and to study the link of CRTC1 and presenilin (PS) in pathological tau at synapses. Our results show that CRTC1 is essential for long-term associative memory and modulates N-methyl-D-aspartate receptors (NMDARs; GluN)-mediated neurotransmission. CRTC1 regulates NMDARs subunit composition, protein kinase C (PKC)-dependent GluN1 phosphorylation and synaptic localization. Remarkably, by using a constitutively cytosolic CRTC1 mutant harboring triple S64/151/245A mutation, I demonstrate that GluN1 phosphorylation and synaptic localization are independent of CRTC1 nuclear activity. In addition, CRTC1 contributes to maintain neuronal proteome by promoting mRNA transport and protein synthesis at dendritic compartments. Biochemical analyses of purified synaptosomes from PS1 conditional knockout (PS1 cKO);Tau mouse model reveal increased pathological tau and reduced CRTC1 at synapses. Analysis of autophagy in PS1 cKO;Tau mouse model and human samples show that PS1 negatively regulates autophagy induction and maintains autolysosomes clearance, and its loss likely contributes to accumulation and aggregation of pathological tau. In conclusion, our findings indicate that synaptic CRTC1 locally modulates NMDAR-mediated neurotransmission and that increased pathological tau accumulation due to PS1 loss of function leads to CRTC1 deregulation and synapse pathology

    N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by 伪-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APPSw,Ind Mice

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: 伪-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer's disease model. Interestingly, a very marked increase in NMDAR-NCS1 complexes was identified in neurons and a marked increase of both NMDAR-NCS1 and NMDAR-CaM complexes was identified in microglia from the transgenic mice. The results show that 伪-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor-calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups

    Expression of Melatonin and Dopamine D Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension

    No full text
    Background: Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D receptors (DRs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by DR and either MT (MTR) or MT (MTR) melatonin receptors. Heteromerization led to the blockade of DR-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. Conclusions: Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of DR-MTR and DR-MTR was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2
    corecore