11 research outputs found

    A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Full text link
    We discuss the implementation of physically meaningful branching ratios between the CRD and PRD contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is Δ=[Δ(1)−Δf.s.(2)]+Δ(2)\varepsilon=\left[\varepsilon^{\tiny (1)}-\varepsilon^{\tiny (2)}_{\rm f.s.} \right]+\varepsilon^{\tiny (2)}, where Δ(1)\varepsilon^{\tiny (1)} and Δ(2)\varepsilon^{\tiny (2)} are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where "f.s." implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation

    A Statistical Inference Method for Interpreting the CLASP Observations

    Full text link
    On 3rd September 2015, the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) successfully measured the linear polarization produced by scattering processes in the hydrogen Lyman-α\alpha line of the solar disk radiation, revealing conspicuous spatial variations in the Q/IQ/I and U/IU/I signals. Via the Hanle effect the line-center Q/IQ/I and U/IU/I amplitudes encode information on the magnetic field of the chromosphere-corona transition region (TR), but they are also sensitive to the three-dimensional structure of this corrugated interface region. With the help of a simple line formation model, here we propose a statistical inference method for interpreting the Lyman-α\alpha line-center polarization observed by CLASP.Comment: Accepted for publication in The Astrophysical Journa

    Modeling the Scattering Polarization of the Hydrogen Ly-alpha Line Observed by CLASP in a Filament Channel

    Get PDF
    The 400 arcsec spectrograph slit of CLASP crossed predominantly quiet regions of the solar chromosphere, from the limb towards the solar disk center. Interestingly, in the CLASP slit-jaw images and in the SDO images of the He I line at 304 A, we can identify a filament channel (FC) extending over more than 60 arcsec crossing the spectrograph slit. In order to interpret the peculiar spatial variation of the Q/1 and U/1 signals observed by CLASP in the hydrogen Ly-alpha line (1216 A) and in the Si Ill line (1206 A) in such a filament channel, it is necessary to perform multi-dimensional radiative transfer modeling. In this contribution, we show the first results of the two-dimensional calculations we are carrying out in given filament models, with the aim of determining the filament thermal and magnetic structure by comparing the theoretical and the observed polarization signals

    CLASP2: The Chromospheric LAyer Spectro-Polarimeter

    Get PDF
    A major remaining challenge for heliophysicsis to decipher the magnetic structure of the chromosphere, due to its "large role in defining how energy is transported into the corona and solar wind" (NASA's Heliophysics Roadmap). Recent observational advances enabled by the Interface Region Imaging Spectrometer (IRIS) have revolutionized our view of the critical role this highly dynamic interface between the photosphere and corona plays in energizing and structuring the outer solar atmosphere. Despite these advances, a major impediment to better understanding the solar atmosphere is our lack of empirical knowledge regarding the direction and strength of the magnetic field in the upper chromosphere. Such measurements are crucial to address several major unresolved issues in solar physics: for example, to constrain the energy flux carried by the Alfven waves propagating through the chromosphere (De Pontieuet al., 2014), and to determine the height at which the plasma Beta = 1 transition occurs, which has important consequences for the braiding of magnetic fields (Cirtainet al., 2013; Guerreiroet al., 2014), for propagation and mode conversion of waves (Tian et al., 2014a; Straus et al., 2008) and for non-linear force-free extrapolation methods that are key to determining what drives instabilities such as flares or coronal mass ejections (e.g.,De Rosa et al., 2009). The most reliable method used to determine the solar magnetic field vector is the observation and interpretation of polarization signals in spectral lines, associated with the Zeeman and Hanle effects. Magnetically sensitive ultraviolet spectral lines formed in the upper chromosphere and transition region provide a powerful tool with which to probe this key boundary region (e.g., Trujillo Bueno, 2014). Probing the magnetic nature of the chromosphere requires measurement of the Stokes I, Q, U and V profiles of the relevant spectral lines (of which Q, U and V encode the magnetic field information)

    Magnetic Imaging of the Outer Solar Atmosphere (MImOSA): Unlocking the driver of the dynamics in the upper solar atmosphere

    Full text link
    The magnetic activity of the Sun directly impacts the Earth and human life. Likewise, other stars will have an impact on the habitability of planets orbiting these host stars. The lack of information on the magnetic field in the higher atmospheric layers hampers our progress in understanding solar magnetic activity. Overcoming this limitation would allow us to address four paramount long-standing questions: (1) How does the magnetic field couple the different layers of the atmosphere, and how does it transport energy? (2) How does the magnetic field structure, drive and interact with the plasma in the chromosphere and upper atmosphere? (3) How does the magnetic field destabilise the outer solar atmosphere and thus affect the interplanetary environment? (4) How do magnetic processes accelerate particles to high energies? New ground-breaking observations are needed to address these science questions. We suggest a suite of three instruments that far exceed current capabilities in terms of spatial resolution, light-gathering power, and polarimetric performance: (a) A large-aperture UV-to-IR telescope of the 1-3 m class aimed mainly to measure the magnetic field in the chromosphere by combining high spatial resolution and high sensitivity. (b) An extreme-UV-to-IR coronagraph that is designed to measure the large-scale magnetic field in the corona with an aperture of about 40 cm. (c) An extreme-UV imaging polarimeter based on a 30 cm telescope that combines high throughput in the extreme UV with polarimetry to connect the magnetic measurements of the other two instruments. This mission to measure the magnetic field will unlock the driver of the dynamics in the outer solar atmosphere and thereby greatly advance our understanding of the Sun and the heliosphere.Comment: Submitted to Experimental Astronomy (on 28. Jul. 2020). Based on a proposal submitted in response to a call for white papers in the Voyage 2050 long-term plan in the ESA science programme. 36 pages, 10 figure

    CLASP2: High-Precision Spectro-Polarimetery in Mg II h & k

    Get PDF
    The international team is promoting the CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket experiment, which is the re-flight of CLASP (2015). In this second flight, we will refit the existing CLASP instrument to measure all Stokes parameters in Mg II h k lines, and aim at inferring the magnetic field information in the upper chromosphere combining the Hanle and Zeeman effects. CLASP2 project was approved by NASA in December 2016, and is now scheduled to fly in 2019

    Quiet Sun Center to Limb Variation of the Linear Polarization Observed by CLASP2 Across the Mg II h & k Lines

    Full text link
    The CLASP2 (Chromospheric LAyer SpectroPolarimeter 2) sounding rocket mission was launched on 2019 April 11. CLASP2 measured the four Stokes parameters of the Mg II h & k spectral region around 2800 Angstroms along a 200 arcsecond slit at three locations on the solar disk, achieving the first spatially and spectrally resolved observations of the solar polarization in this near ultraviolet region. The focus of the work presented here is the center-to-limb variation of the linear polarization across these resonance lines, which is produced by the scattering of anisotropic radiation in the solar atmosphere. The linear polarization signals of the Mg II h & k lines are sensitive to the magnetic field from the low to the upper chromosphere through the Hanle and magneto-optical effects. We compare the observations to theoretical predictions from radiative transfer calculations in unmagnetized semi-empirical models, arguing that magnetic fields and horizontal inhomogeneities are needed to explain the observed polarization signals and spatial variations. This comparison is an important step in both validating and refining our understanding of the physical origin of these polarization signatures, and also in paving the way toward future space telescopes for probing the magnetic fields of the solar upper atmosphere via ultraviolet spectropolarimetry.Comment: 14 pages, 5 figures, to be published in the Astrophysical Journal (ApJ), initially submitted May 2022, revised submission July 202

    First Metis Detection of the Helium D3 Line Polarization in a Large Eruptive Prominence

    No full text
    Metis on board Solar Orbiter is the space coronagraph developed by an Italian-German-Czech consortium. It is capable of observing solar corona and various coronal structures in the visible-light (VL) and UV (hydrogen Lyα) channels simultaneously for the first time. Here we present observations of a large eruptive prominence on 2021 April 25-26, in the VL, taken during the mission cruise phase, and demonstrate that apart from the broadband continuum emission, which is due to the Thomson scattering on prominence electrons, we detect a significant radiation in the neutral-helium D3 line (587.6 nm), which lies within the Metis VL passband. We show how the prominence looks like in Stokes I, Q, and U. We consider two extreme cases of the prominence magnetic field, and we separate the Stokes I and Q signals pertinent to Thomson scattering and to the D3 line. The degree of linear polarization of the D3 line (both Q and U) indicates the presence of the prominence magnetic field; hence Metis can serve as a magnetograph for eruptive prominences located high in the corona

    Effectiveness and safety of nutritional supplements in the treatment of hereditary retinal dystrophies: a systematic review

    No full text
    The hereditary retinal dystrophies (HRDs) are a group of genetically determined disorders that result in loss of the visual function. There is a lack of standard pharmacological treatments or widely accepted nutritional recommendations. The objective of this review is to summarise the scientific evidence on the effectiveness and safety of nutritional supplements for the treatment of HRDs. We conducted a scientific literature search on Medline and PreMedline, EMBASE, SCI-EXPANDED, SSCI, and The Cochrane Library up to August 2014. Experimental, quasi-experimental and controlled observational studies were selected. Eight studies were ultimately included, seven on retinitis pigmentosa (RP) and one on Best disease. Vitamin A, vitamin E, docosahexaenoic acid (DHA), lutein and ÎČ-carotene were assessed. A 15 000 IU daily dose of vitamin A was reported to have shown a small protective effect on the progression of RP, as was the use of the carotenoids lutein and ÎČ-carotene. Different DHA doses has no effect on RP or Best disease. No supplement showed severe adverse effects in the selected studies although strong evidence of toxicity exists for high doses of vitamin A and ÎČ-carotene in certain populations. The selected studies concluded that there may be a small beneficial effect of vitamin A, lutein and ÎČ-carotene on the progression of RP. The limited evidence available indicates some well-designed additional studies on combined supplements strategies may achieve more robust conclusions. Moreover, the scarcity of evidence available on the treatment of HRD other than RP with nutritional supplements supports the need for further research efforts
    corecore